
COMPUTING PSEUDOSPHERICAL SURFACES FROM GEOMETRIC CAUCHY DATA

DAVID BRANDER

This note explains briefly how to use Matlab to compute constant Gauss curvature K = −1 surfaces, (also
called K-surfaces, or pseudospherical surfaces) using a numerical implementation of the generalized d’Alembert
method for such surfaces given by M. Toda [3]. With further recent results about the geometric Cauchy problem
for these surfaces, one can compute a K-surface containing a prescribed curve with the surface normal prescribed
along the curve [2], or a K-surface containing a prescribed curve as a cuspidal edge. Choosing appropriate curves
makes it possible to create K-surfaces with interesting properties.

To compute the examples here, you need to put the files ksurf.m, kgcpotprinc.m, Asing.m, SGCP.m and
charSGCP.m, which can be found at this link: http://davidbrander.org/software.html - into a folder where Matlab
can find them. If you have a C++ compiler installed then try the function ksurfX, which calls some C++ mex
functions. It’s about twice as fast.

1. SIMPLE EXAMPLES: PRESCRIBED SINGULARITIES

We will look at some very simple examples first, and then explain the code in more detail in the following
section.

FIGURE 1. Left: Part of the unique K-surface generated by a given torus knot, which appears
as the cusp line in the center. Middle: The surface generated by the red curve. It has swallowtail
singularities as well as cuspidal edges. Right: A K-surface with a cone singularity at the center.

There are no complete immersed K-surfaces in R3. If you move far enough along a K-surface, you will come
to a cusp line (like the sharp edges in Figure 1), or a more complicated singularity. A natural generalization
of immersed constant curvature −1 surfaces is derived from Lorentz harmonic maps, and this type of surface
is globally defined but has singularities here and there, mostly cuspidal edges. An interesting thing about these
singularities is that, except for a few special cases, a singular curve determines the entire surface uniquely.
More precisely, given a space curve with non-vanishing curvature κ and torsion τ satisfying |τ| 6= 1, there is a
unique generalized K-surface containing this curve as a cuspidal edge. This makes singular curves interesting as
generators of K-surfaces.

The function ksurf computes a surface from a given pair of function handles Am and Ap (sometimes Am and
Ap are the same) called potentials. The article [1] gives very simple potentials for producing pseudospherical
surfaces with prescribed singularities. The Matlab functions Asing, SGCP and charSGCP return the potentials
for the corresponding data.

Date: February 18, 2015.
1

http://davidbrander.org/software.html

2 DAVID BRANDER

1.1. Non-characteristic singularities. Most singularities are of this type. The singular curve determines the
surface uniquely.

1.1.1. Arbitrary non-characteristic singularities. The function Asing produces the potential for a K-surface with
a generic singularity. Enter

X = Asing(@(t)β (t),@(t)A(t),@(t)B(t)),

where β (t), A(t) and B(t) are arbitrary non-vanishing functions. (The singular curve will be degenerate, i.e. not
a regular curve in the coordinate domain, at a point where any of these functions vanishes). Then the command

ksur f (X ,X ,eye(2),eye(2),xinterval,yinterval, looporder),

where xinterval of the form [x0, stepsize, stepsleft, stepsright] describes an interval with center x0, and yinterval
is similar, and looporder is the order of the polynomial approximation of the Fourier series involved, produces
the surface with singularity determined by X . The choice of looporder depends on the problem and the size of
the rectangle computed. Large values are more accurate but slower.

From Theorem 4.2 of [1] , the singularity is:

(1) a cuspidal edge if A(0)+B(0) 6= 0,
(2) a swallowtail if A(0)+B(0) = 0 and A′(0)+B′(0) 6= 0.
(3) a cone singularity if A(t)+B(t) = 0 for all t.

The images on the left in Figure 2 are produced with the following commands:
X = Asing(@(t)2, @(t)1+0.5*t,@(t)-1+0.5*t);
f = ksurf(X,X, eye(2), eye(2), [0 0.035 60 60],[0 0.035 60 60], 6);
f = ksurf(X,X, eye(2), eye(2), [0 0.035 80 80],[0 0.035 80 80], 7);
and those on the right by:

X = Asing(@(t)1, @(t)2+t,@(t)-2-t);
f = ksurf(X,X, eye(2), eye(2), [0 0.015 80 80],[0 0.015 80 80], 6);

FIGURE 2. Left, center: Swallowtail. Right: Cone

1.1.2. The unique K-surface corresponding to a generic space curve. The command

X = SGCP(@(s)κ(s),@(s)τ(s))

produces the potential for a pseudospherical surface which contains an arc-length parameterized cuspidal edge
curve with the prescribed curvature κ and torsion τ , (see [1] Theorem 4.3). It degenerates at points where κ = 0
or τ = ±1. If you have the curvature and torsion of a given curve γ(t) which is not arc-length parameterized,
then use:

X = SGCP(@(t)κ(t),@(t)τ(t),@(t)dsdt(t),

where dsdt(t) = |γ ′(t)|, instead.

GCP FOR K-SURFACES 3

FIGURE 3. Helix surface

The commands:
X = SGCP(@(t)1/2, @(t)5) ;
f = ksurf(X,X, eye(2), eye(2), [0 0.025 80 80],[0 0.025 80 80], 10);
f = ksurf(X,X, eye(2), eye(2), [0 0.025 120 120],[0 0.025 120 120], 14);
produce the two different sized sub-domains of a helix surface in Figure 3.

The commands:
X = SGCP(@(t)t∧2, @(t)2)
f = ksurf(X,X, eye(2), eye(2), [0 0.03 120 120],[0 0.03 120 120], 6);
produce the surface in Figure 4. Because the curvature κ(t) = t2 grows in both directions, the central singular

curve curves more and more tightly as |t| → ∞. The surface has more and more cuspidal edges the further you
move away from the center, and the whole surface appears to be contained in a bounded set, because of this
spiraling effect.

FIGURE 4. κ(t) = t2, τ(t) = 2.

1.2. Characteristic singularities. Characteristic singularities are special singularities where the singular curve
is tangent to a characteristic direction (null direction with respect to the Lorentz structure of the surface). A
regular characteristic singular curve is either a straight line segment or a curve with non-vanishing curvature and
constant torsion τ = ±1. For a curve of this type, there are infinitely many pseudospherical surfaces that have
this curve as a characteristic singularity. The function charSGCP computes all of these, given the right input.
Enter

[X ,Y] = charSGCP(@(x)κ(x),@(y)α(y));

where (from [1] Thereom 5.1) either:

(1) κ(x) = 0 for all x and α is an arbitrary function, or
(2) κ(x) 6= 0 for all x and α is a function that must satisfy α(0) = 0.

4 DAVID BRANDER

Entering
[X,Y] = charSGCP(@(t)0, @(t)1);
f = ksurf(Y,X, eye(2), eye(2), [0 0.04 60 60],[0 0.04 60 60], 6);
produces a surface with a straight line cuspidal edge (Figure 5).

FIGURE 5. κ(t) = t2, τ(t) = 2.

2. USING THE FUNCTION ksurf

Here is a more detailed description of how ksurf works The function ksurf computes the surface corresponding
to the potentials Ap and Am. These are loop valued function handles. All loops are entered untwisted and as
Laurent polynomials of the form ∑

n
−n Aiλ

i. For example the loop A0+A1λ should be thought of as 0.λ−1+A0+

A1λ , and this is entered as a 2×6 matrix [0 A0 A1]. Untwisting a twisted loop is done as follows:(
a(λ) b(λ)
c(λ) d(λ)

)
7→

(
a(
√

λ) B−1(
√

λ)

C+1(
√

λ) d(
√

λ)

)
, B−1(λ) := λ

−1b(λ), C+1(λ) := λc(λ).

For example if Ap is the twisted potential
(

0 i
i 0

)
λdx, the loop

(
0 i
i 0

)
λ untwists to(

0 i
λ i 0

)
=

(
0 0
0 0

)
λ
−1 +

(
0 i
0 0

)
+

(
0 0
i 0

)
λ .

The potential would then be entered as

Ap = @(t)[0,0,0, i,0,0; 0,0,0,0, i,0]

Similarly the twisted potential Am =

(
0 1
−1 0

)
λ−1 untwists to

(
0 λ−1

−1 0

)
.

We can use these to compute the Amsler surface, (which contains two straight lines) by entering in Matlab:
» Ap=@(t)[0, 0, 0, i, 0, 0;0, 0, 0, 0, i, 0];
» Am=@(t)[0 ,1, 0, 0, 0, 0; 0, 0, -1, 0, 0, 0];
» f=ksurf(Am, Ap, eye(2), eye(2), [0, 0.05, 40, 40], [0, 0.05, 40, 40], 8);
Which produces some text output and the image shown in Figure 6.

Of the text output, the important thing is at the bottom
Max error:3.8e-06. Mean error: 1.3e-06
These errors are estimated at each point by checking if the matrix computed is in su(2). If the maximum error is
less than about 10−2, then the image should be accurate. If the maximum error is greater than 10−1, you can try
again with a higher order of polynomial approximation for the loops - see example below.

To use the function ksurf, type:

f = ksur f (Am, Ap, Fm0, F p0, Iy, Ix, looporder).

Am and Ap are the function handles corresponding to the plus and minus potentials, as described above, Fm0 and
F p0 are loops which are to be the initial conditions, and can usually be taken to be the 2×2 identity (eye(2) in

GCP FOR K-SURFACES 5

FIGURE 6. Amsler’s surface

Matlab), and Iy = [y0, ystep, le f t points,right points] describes the interval of integration for Am, that is, Am will
be integrated over the interval [y0− ystep∗ le f t points,y0 + ystep∗ right points] with stepsize ystep. Ix is similar
w.r.t. Ap. Finally the looporder is the order of the Laurent polynomial approximation you want to use for the
loops.

To get a K-surface as output, loops Ap amd Am have to have the appropriate properties for the potentials for
this problem, described in [2], (Definition 5.2).

We can compute one quarter of the Amsler surface above, with the command:
f=ksurf(Am, Ap, eye(2), eye(2), [0 0.05 0 40], [0 0.05 0 40], 6);
to get the left image in Figure 7.

A somewhat random example:
» Ap=@(t)[3*i, 0, 0, 1, i, i*cos(t),0,0,0,0; 0, -3*i, 0,0,-1,-i,i*cos(t),0,0,0];
» Am=@(t)[0,(1+t∧2)*(1+i),0,0,0,0; 0,0,(1+t∧2)*(-1+i),0,0,0];
» f=ksurf(Am, Ap, eye(2), eye(2), [0 0.03 40 40], [0 0.03 40 40], 8);
produces the right image in Figure 7.

FIGURE 7. Left: Amsler’s surface again. Right: Random example.

3. COMPUTING A SURFACE FROM REGULAR GEOMETRIC CAUCHY DATA

Theorem 5.3 in [2] can be used to compute the surface which contains an initial curve f (t) and with prescribed
unit normal n(t) along the curve, provided the inner product d f

dt ·
dn
dt is nowhere vanishing. (If this inner product

vanishes then uniqueness is lost).
There are two cases that the theorem applies to, the case that d f

dt and dn
dt are parallel for all t, and the case that

they are linearly independent for all t. The function kgcppotprinc will compute the potentials for the first case,

6 DAVID BRANDER

given function handles for the following functions

f p =
d f
dt

, f pp =
d2 f
dt2 ,

np =
dn
dt

, E =
d f
dt
×n.

(A similar function can be written to compute the potentials for the second case).
The parabola y = x2 is parameterised as f (t) = (t, t2,0) with derivative f ′(t) = (1,2t,0) and f ′′(t) = (0,2,0).

Using the curves own unit normal n(t) = 1
(1+4∗t2)3/2 (2,4t,0) we can compute the pseudospherical surface that

contains this parabola as a principal geodesica curve with the commands:
A=kgcppotprinc(@(t)[1;2*t;0], @(t)(1+4*t∧2)∧(-3/2)*[2;4*t;0], @(t)[0;2;0] , @(t)[0;0;0]);
f=ksurf(@(t)-A(-t), A, eye(2), eye(2), [0 0.05 40 40], [0 0.05 40 40], 5);
To get the first image in Figure 8.

A similar process gives a pseudospherical surface containing an ellipse:
fp=@(t)[cos(t);-2*sin(t);0];
fpp=@(t)[-sin(t);-2*cos(t);0];
np=@(t)(cos(t)∧2+4*sin(t)∧2)∧(-3/2)*[2*sin(t)∧2*cos(t)+2*cos(t)∧3; -4*cos(t)∧2*sin(t)-4*sin(t)∧3; 0];
E=@(t)[0;0;0];
f=ksurf(@(t)-A(-t), A, eye(2), eye(2), [0 pi/50 50 50], [0 pi/50 50 50], 4);
This produced the second image in Figure 8, which is not accurate because we used to low an order of approxi-
mation for the loops (order 4). The errors were:
Max error:1.4. Mean error: 0.051,
Which indicates we need to raise the loop order significantly. Computing with order 7:
f=ksurf(@(t)-A(-t), A, eye(2), eye(2), [0 pi/50 50 50], [0 pi/50 50 50], 7);
We have:
Max error:0.0015. Mean error: 2.4e-05
and the third image in Figure 8. With a maximum error of 10−3, the image is accurate.

FIGURE 8. Left: A pseudospherical surface containing a parabola. Middle: Inaccurate image.
Right: A surface containing an ellipse.

These examples are described in [2].

REFERENCES

1. D Brander, Pseudospherical frontals and their singularities, arXiv:1502.04876 [math.DG].
2. D Brander and M Svensson, The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps, J. Differential Geom. 93

(2013), 37–66.
3. M Toda, Initial value problems of the sine-gordon equation and geometric solutions, Ann. Global Anal. Geom. 27 (2005), 257–271.

DEPARTMENT OF MATHEMATICS, MATEMATIKTORVET, BUILDING 303 S, TECHNICAL UNIVERSITY OF DENMARK, DK-2800
KGS. LYNGBY, DENMARK

E-mail address: D.Brander@mat.dtu.dk

	1. Simple examples: Prescribed singularities
	1.1. Non-characteristic singularities
	1.2. Characteristic singularities

	2. Using the function ksurf
	3. Computing a surface from regular geometric Cauchy data
	References

