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ABSTRACT. The constructions of advanced architectural designs are presently very labour
intensive, time consuming, and expensive. They are therefore only applied to a few pres-
tige projects, and it is a major challenge for the building industry to bring the costs down
and thereby offer the architects more variability in the (economically allowed) designs -
i.e., to allow them to think out of the box. To address this challenge The Danish Na-
tional Advanced Technology Foundation (now InnovationsFonden) is currently supporting
the BladeRunner project that involves several Danish companies and public institutions.
The project aims to reduce the amount of manual labour as well as production time by ap-
plying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly
curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology
where the surfaces are essentially swept out by driving an Euler elastica through a block
of EPS. This paper will be centered around the mathematical challenges encountered in
the implementation of this idea. They are mainly concerned with the rationalization of the
architects’ CAD drawings into surfaces that can be created via this particular sweeping and
cutting technology.

1. THE NEED FOR LOW COST PROCEDURES

A recurring theme in the architectural industry of today is a conflict between the design
ambitions of the architect and the economic realities of fabrication processes. The desire to
create unique and attractive designs, often motivated by the competitive industry climate,
leads to the use of curved geometries and bespoke elements that can be conceived easily
within modern CAD systems, but, in reality, are prohibitively expensive to build. This
results in compromises at the so-called rationalization stage, where the design is adjusted
within an engineering context for production purposes. A typical example is where the
desired shape of a building leads to panels (or some other element) of perhaps 200 different
shapes. Consultation with fabrication contractors then reveals that dramatic cost reductions
can be achieved if the design is adjusted so that only 20 unique elements are used, with
repetition, instead of the 200. Finally, budgetary considerations force a compromise of the
original design.

The present project addresses this issue, in particular within the domain of the produc-
tion of formwork for concrete constructions. The shape of the surface of a facade or other
element is produced – possibly on location – in negative in several pieces of (easily trans-
ported and packed) expanded polystyrene (EPS) foam that is then used as a mould for
concrete (in situ) casting. EPS can also be used in positive shape production for some ap-
plications by applying a coating and retaining the EPS as a structural element. For curved
surfaces the currently available technology for shaping the EPS is computer numerically
controlled milling, a slow, and therefore expensive, process. The BladeRunner project,
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supported by the Innovation Fund Denmark, is presently developing new processes, robotic
Hot Wire/Blade cutting, for carving shapes out of EPS using a robotically controlled heated
wire or blade. The technology is projected to reduce production time of architectural form-
work by a factor of over 100, and to bring the cost of production for advanced shapes into
the domain of financial feasibility.

FIGURE 1. Robotic Hot Wire cutting in Odense, Denmark.

2. PRINCIPLES OF HOT BLADE CUTTINGS

The essential principle of both Hot Wire and Hot Blade cutting is very simple. A heated
wire or blade, either of which we may think of as a “blade”, is moved relative to a block of
EPS, carving out a surface through the block (Figure 1). Either the block or the blade, or
both, are controlled by a robot. For definiteness, we regard the block as fixed and the blade
as moving.

2.1. Hot wire cutting and its limitations. For the wire technology, the wire is held tight,
forming a straight line, and thus sweeps out a ruled surface. This technology is limited
in its ability to approximate general freeform surfaces. This can be seen by considering
the Gaussian curvature of a surface, which is defined as follows: through any point p
on a surface a curve is obtained by intersecting the surface with a plane perpendicular to
the tangent plane at that point (Figure 2). The normal curvature associated to the tangent
direction of this curve is the curvature of this curve at the point p, with the sign determined
by a fixed choice of surface normal vector (Figure 2, left). The maximum and minimum
values obtained from all possible tangent directions at p are called the principal curvatures,
κ1 and κ2, and their product is the Gaussian curvature K = κ1κ2. In the saddle surface
shown at Figure 2, the principal curves bend in opposite directions away from the tangent
plane and so κ1 and κ2 have opposite signs and K < 0.

If the Gaussian curvature is positive, then κ1 and κ2 at p have the same sign, and any
other tangent direction at p has normal curvature κn with κ1 ≥ κn ≥ κ2. Therefore κn
cannot be zero in this case. Now for an arbitrary arc-length parameterized curve γ in the
surface the acceleration vector decomposes as γ ′′(s) = κg(s)ν(s)+κn(s)N(s), where N is
the surface normal, and κn is the normal curvature in the direction of γ ′. It follows that, if
κn 6= 0, then the acceleration is non-zero and thus the curve cannot be a straight line. On
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FIGURE 2. A saddle surface. Left: the normal curvature defined by this intersec-
tion curve is positive if the downward pointing surface normal is chosen. Middle:
the planes defining the principal curvatures at the center. Right: this normal sec-
tion is a straight line; the normal curvature is zero in this direction.

the other hand, a ruled surface is defined to be a surface swept out by a smoothly varying
family of straight lines: through every point of a ruled surface there is a straight line lying
in the surface. Therefore, by the discussion above, a ruled surface cannot have positive
Gaussian curvature; moreover, there is no chance of obtaining a good local approximation
for a positively curved surface by a ruled surface (Figure 3).

FIGURE 3. At a point of positive Gaussian curvature the surface is bowl-shaped.
No straight line tangent to the surface can approximate a curve in the surface to
more than first (tangential) order.

Figure 4 shows (center) an approximation of a negatively curved surface by ruled strips
which can be realized by repeated hot wire cuttings. The ruling directions are chosen to
be close to the asymptotic directions, namely directions where the normal curvature κn is
zero. However, even for negatively curved surfaces, it is in general not possible to obtain a
tangent continuous approximation - the tangent planes do not match along adjacent strips.

We refer to Section 7 for a concrete modern example of a relevant surface – a skater ramp
– which clearly displays all curvatures and thence also the production challenges that we
are addressing in this work.

2.2. Hot blade cutting. The blade concept is much more general than the wire concept
illustrated above: the end points and the tangents at the endpoints of the blade (center-
)curve can vary relative to each other during the sweeping. We will assume, however,that
the curve lies in a plane, that is, that the end tangents are co-planar. This restriction makes
the mechanical implementation of the process easier, both in terms of choosing the cross-
sectional shape of the blade design and allowing for the possibility that only one edge of
the physical blade is heated, as illustrated to the right in Figure 8 below.
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FIGURE 4. Left to right: The hyperboloid (a ruled surface with automatic tan-
gent matching along adjacent strips); Approximation of a negatively curved sur-
face by strips of ruled surfaces; Ruled strip approximation of a positively curved
surface.

An elastic rod, of a fixed length and with end points and end tangents at a given position,
assumes the shape of an Euler elastica (discussed below). These curves are well understood
mathematically and are given in terms of elliptic functions. We refer to Section 3 below for
a brief outline of the parametric representation of the family of all planar elastica.

In order to apply either of these technologies to a given CAD design, a rationalization
of the relevant surface is necessary: the surface must first be segmented into pieces, each of
which can be approximated within a given tolerance by a surface swept out by curves of the
relevant type (lines or a family of elastica). Next, each segment is foliated by curves each
of which is approximated by a curve of the type in question. Finally, the data for producing
these curve sweepings is given to the robot control software.

Methods for rationalization for Hot Wire cutting have been given already in the liter-
ature (see below). Therefore, in this article, the rationalization project we are concerned
with consists of both developing a segmentation algorithm for blade-cut surfaces, and an
algorithm for approximating arbitrary spline curves by Euler elastica.

2.3. Previous related works. Pottmann and Flörey [7] developed a ruled surfaces segmen-
tation algorithm using the fact that on ruled surfaces one of the asymptotic directions at a
point must be tangent to the ruling, giving natural candidates for the ruling direction in the
surface to be approximated. As such, this segmentation strategy does not generalize to the
case of hot blade cutting, therefore a new strategy must be developed.

For the Hot Blade technology, some work has been done in the late 1990’s to the early
2000’s by a group at Delft: see [8, 4] and associated references. The use of the Hot Blade
technology there is somewhat different, as the aim is to produce 3-dimensional solid rapid
prototype models from EPS via a so-called “thick-layered fabrication” process. The solid
is built up by stacking many thick slices, and the curved surface that needs to be cut is
only a narrow strip around the boundary of each slice. Therefore, the segmentation prob-
lem is completely different from the surface segmentation problem that will apply to the
BladeRunner process.

The work of the Delft group is concentrated on approximating the blade shape and algo-
rithms for tool positioning. The approach they use for approximating the blade shape is to
apply a numerical method to minimize the bending energy. Below we will use a different
approach that takes advantage of the known analytic solutions for this problem to give an
explicit parameterization of the space of solutions. This allows us to move easily in the
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space of solutions, calculate gradients, and use standard optimization packages to find an
elastic curve that approximates an arbitrary given curve.

3. THE EULER ELASTICA

We describe here a parameterization of the space of planar elastic curve segments. More
details of this parameterization and further references can be found in [3]. An introduction
to the theory of elastic curves, with historical references, can be found in [11]. Other works
on the topic of elastic curves as splines are [1, 2, 5, 6].

3.1. The Euler-Lagrange equation. We give here a brief derivation of the differential
equation that determines the solutions to the elastica problem. The reader unfamiliar with
the calculus of variations could take this derivation for granted and proceed directly to the
solutions given in the next subsection. Let γ : [0, `]→ R2 be a plane curve segment param-
eterized by arc-length, and define an angle function θ(s) by γ̇(s) = (cosθ(s),sinθ(s)). A
curve segment of length ` starting at (x0,y0) and ending at (x`,y`) satisfies

(1) x` = x0 +
∫ `

0
cosθ ds , y` = y0 +

∫ `

0
sinθ ds .

Let κ denote the curvature θ ′(s). An elastica is a curve that minimizes the bending energy

(2)
1
2

∫ `

0
κ(s)2 ds .

The equations defining the elastica are obtained from a variational problem: suppose γ is
an elastica from (x0,y0) to (x`,y`) with angle function θ(s). A smooth variation is given by
the family γ t with angle function θt(s) = θ(s)+ tψ(s), where ψ is a differentiable function
with ψ(0) = ψ(`) = 0. Applying the method of Lagrange multipliers we find that, if γ
minimizes the energy among such curves, then the angle function θ satisfies:

(3)
d2θ
ds2 +λ1 sinθ −λ2 cosθ = 0 .

Setting (λ1,λ2) = λ (cosφ ,sinφ), with λ ≥ 0, this becomes d2θ
ds2 +λ sin(θ −φ) = 0. Note

that λ = 0 if and only if κ is constant, i.e the curve γ is either a straight line segment or a
piece of a circle. If λ 6= 0, set

(4) γ̃(s) =
√

λR−φ γ
(

s√
λ

)
, Rφ =

[
cosφ −sinφ
sinφ cosφ

]
.

Then γ̃ is a scaled and rotated version of γ and thus also an elastica. Its tangent angle
is θ̃(s) = θ(s/

√
λ )− φ and it satisfies the normalized pendulum equation d2θ̃

ds2 = −sin θ̃ .
Hence we conclude that, up to a scaling and rotation of the ambient space, all arc-length
parameterized elastica γ : [0,1]→ R2, with non-constant curvature κ , can be expressed as:

(5) γ(s) = γ(0)+
∫ s

0
(cosθ(t),sinθ(t))dt

where

(6) θ̈ =−sinθ .
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3.2. The space of elastic curve segments. We now find some suitable parameters to de-
scribe the space of elastic curve segments. First, it is well known that the solutions to (6)
can be expressed in closed form via the elliptic functions sn, cn, and dn. These solutions
can be found in Love [12]. There are two classes of solution curves: those with inflection
points (i.e. points where κ = θ̇ = 0) and those without inflections. Each class of solutions
is a 1-parameter family.

k = 0

k = 0.3

k = 0.7

k = 0.83

k = 0.87

k = 0.9089

k = 0.937

k = 0.99

k = 1

FIGURE 5. Euler elastica. Left: inflectional. Right: non-inflectional. The re-
spective elastica – with values of k ranging from 0 at the top to 1 at the bottom –
are plotted.

The inflectional elastica starting at (0,0) with initial angle θ(0) = 0 and θ̇(0)> 0 is

ζk(s) = ζ (s,k) =
(

2E(s,k)− s
2k(1− cn(s,k))

)
, where k = θ̇(0)/2.

A segment of such a curve is determined by the value k, a starting point s0 and a length
`. Finally, adding a scaling S, a rotation φ and a translation (x0,y0), we have a standard
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representation γ(k,s0,L,S,φ ,x0,y0)
: [0,1]→ R2 for a segment of an inflectional elastic curve:

γ(k,s0,`,S,φ ,x0,y0)
(t) = SRφ (ζk(s0 + ` t))+

(
x0
y0

)

= SRφ

(
2E(s0 + ` t,k)− (s0 + ` t)

2k (1− cn(s0 + ` t,k))

)
+

(
x0
y0

)
,

where
E(s,k) :=

∫ s

0
dn2(τ,k)dτ .

Note that the arc-length parameter in this representation is s = S (s0 + ` t) and not t and that
the length is L = S`.

Similarly, we obtain a standard representation of a non-inflectional elastic curve segment:

γ(k,s0,`,S,φ ,x0,y0)
(t) = SRφ


(1− 2

k2 )(s0 + ` t)+ 2
k E
(

s0+` t
k ,k

)

2
k (1−dn

(
s0+` t

k ,k)
)


+

(
x0
y0

)
.

4. SWEEPING SURFACES WITH EULER ELASTICA

The figures in this section illustrate examples of surfaces foliated by continuously vary-
ing segments of Euler elastica. These examples are constructed by parameterizing the space
of planar elastica segments, as in the previous section, choosing a small number of sample
curve segments, and then interpolating the data through the parameter space. Hence each
surface is swept by a family of planar elastica.

FIGURE 6. Examples of surfaces swept by continuously varying elastic curve segments.

In principle, all of these surfaces could be produced by robotic hot-blade cutting, but
there are technical issues that depend on the practical implementation. For example, the
surface on the left in Figure 7 is a surface of revolution, but one end of the profile curve is
much closer to the axis of rotation than the other. This means that the blade moves much
more slowly on the inner end resulting in too much melting of the EPS. One solution is
to segment the surface into several pieces, cut separately. Another is to approximate this
surface by some other, non-rotational, family of elastic segments.

Yet another restriction arises if a flat blade is used, rather than a cylindrical rod (see
Figure 8). With the flat blade design, the blade is curved in a plane perpendicular to the
plane of the blade. If one edge of the blade is heated, the motion of the blade should be
roughly in the direction of this edge, that is, approximately perpendicular to the plane of
the curve, in order to cut a path through the material. Another way to say this is that the
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FIGURE 7. Two technically problematic situations.

elastic curves should be as close as possible to geodesic curves (which are characterized
by |κn|= κ = ‖γ ′′‖) on the surface under construction. To require that these planar elastic
curves are true geodesics would place too large a restriction on the uses of this method; so
we apply a tolerance instead. Both surfaces shown in Figure 6 are reasonable candidates
for cutting with a flat blade like the blade to the right in Figure 8. The surface to the right
in Figure 7 however, would be impractical with the given elastica foliation. The osculating
plane spanned by γ ′ and γ ′′ of the elastic curve shown is very close to the tangent plane
of the surface; thus the hot edge of the blade is pointing out of the surface, and the blade
would not be able to progress in the required direction.

FIGURE 8. Left: A cylindrical rod can cut in any direction that is close to per-
pendicular to the tangent of the curve. Right: A flat (ribbon) blade design (with
its hot edge indicated in red) moves well only in the directions given by the flat
extension of the blade past the hot edge itself.

5. APPROXIMATION BY EULER ELASTICA

In this section we consider the problem of approximating a given planar spline curve x :
[0,1]→ R2 by a planar elastic curve. We present two different approaches to this problem.
In the first we try to find the parameters (k,s0, `,S,φ ,x0,y0) of the elastica that has the best
fit to the curve x. This is a nonlinear optimization problem, and the final result depends
crucially on a good initial guess. The second approach is purely numerical – we model the
elastica with a spline on a much finer knot vector than the original curve, and then solve
a constrained optimization problem minimizing the elastic energy under the constraint of
being within some distance to the original curve.

5.1. Analytic approach: finding the parameters for the elastica. We describe here the
essentials of the gradient driven analytic approach. For full details, see the article [3].

We wish to find the elastic curve segment which most closely resembles the given spline
curve x. We choose to minimize the L2-distance between the curves. For a given set of
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spline

intial guess

result

FIGURE 9. Approximating a spline by elastica. The solid line is the spline,
the dashed curves are the initial guess, the dash-dotted curves are the optimized
approximations. To the left an arbitrary (bad) initial guess and to the right our
guess.

parameters, the elastic curve segment γ(k,s0,`,S,φ ,x0,y0)
is parameterized with constant speed

`S over the interval [0,1]. The spline curve is itself also defined on [0,1], but its speed
is not necessarily constant. Since the L2-norm compares points at corresponding param-
eter values, we need to reparameterize either the spline or the elastica for the L2-distance
to be a good measure of the curves’ resemblance to each other. The simplest way is to
reparameterize the elastica using the arc length s of the spline which can be calculated as

(7) s(t) =
∫ t

0

ds
dt

dτ =
∫ t

0
‖x′(τ)‖dτ ,

and the length of the spline is then L = s(1). We now consider the minimization problem

(8) minimizek,s0,`,S,φ ,x0,y0 E (k,s0, `,S,φ ,x0,y0),

where

(9) E =
1
2

∫ 1

0

∥∥∥x(t)− γ(k,s0,`,S,φ ,x0,y0)
(s(t)/L)

∥∥∥
2
‖x′(t)‖dt

is the square of the L2-distance between the spline and the elastica segment.
We use a gradient driven optimization package IPOPT [9], so we need the partial deriva-

tives of the objective function E with respect to the parameters (c1, . . . ,c7)= (k,s0, `,S,φ ,x0,y0),
i.e.,

(10)
∂E

∂ci
=−

∫ 1

0

〈
∂γc
∂ci

(s(t)/L),x(t)− γc(s(t)/L)
〉
‖x′(t)‖dt .

The optimization problem is non-convex, so there are several local minima for E . There-
fore the optimization gives different results depending on the initial values of the parame-
ters, cf. Figure 9. It is therefore necessary for us to have a good initial guess. We describe
next our method for finding an initial guess. The full details can be found in [3].
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We find the initial guess by considering the differential equation (3). If we let u =
1
λ (λ2 x−λ1 y) then the differential equation can be written as d2θ

ds2 = λ du
ds , and integrating

this yields

(11) κ =
dθ
ds

= λ u+α = λ2 x−λ1 y+α .

Letting θu denote the angle between the u-axis and the tangent, we have

cosθu =
1
λ

(
λ2
−λ1

)
·
(

ẋ
ẏ

)
=

du
ds

,

so
dsinθu

du
=

ds
du

dsinθu

ds
=

1
cosθu

cosθu
dθu

ds
= κ = λu+α,

and thus

sinθu =
1
2

λ u2 +α u+β .

As (λ1,λ2) = S−2(cosφ ,sinφ) we get estimates for the scale S and the angle φ by solving
the first equation with respect to λ1,λ2,α in the least square sense. In a similar manner
we can estimate β , and by analysing the resulting parabola we can determine whether we
should use an elastica with or without inflections and estimate the parameter k. In the next
step we determine which segment of the elastica we should use, i.e., estimate s0 and `.
We finally determine the translation (x0,y0) by a least square fit. If we want end point
interpolation then we can achieve that by a final scaling, rotation, and translation.

5.2. A purely numerical approach. We have described above a method for approximat-
ing a spline curve x : [0,1]→R2 by a segment of an elastic curve, represented by an analytic
solution in terms of elliptic functions. An alternative approach is to approximate the spline
by another spline curve y which is intended to be close to an elastica, in the sense that it min-
imizes the elastic energy. This approach could be advantageous for practical reasons. For
example, existing CAD software and other mathematical software and algorithms already
work with the data structure of splines.

We will use a refined knot vector for the new spline curve y. By knot insertion we express
both the target spline x and the elastica approximation y using the same basis functions (B-
splines). This gives us control points xi and yi, i = 1, . . . ,n, that we can compare. We now
seek to minimize the bending energy (2) of the new spline curve y, with control points
yi, while staying close to the original curve x, with control points xi. The difference be-
tween these spline curves is also a spline curve, with control points xi−yi, and the distance
between the curves is captured by the distance between the control points. These points
have coordinates (xi− yi) · ei, where e1 = (1,0) and e2 = (0,2). That is, we consider the
constrained optimization problem:

minimizey1,...,yn

1
2

∫ 1

0
κ2

y ds ,(12)

such that − ε ≤
(
xi−yi

)
· e j ≤ ε , i = 1, . . . ,n, j = 1,2 .(13)

We need to constrain the problem additionally, e.g., by fixing the positions and tangents
at the two end points. On top of this, we thus have an optimization, or sampling, over
end points and tangents. For end point interpolation we simply put y1 = x1, yn = xn, and
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spline curve

spline control points

refined spline control points

resulting curve

resulting control points

FIGURE 10. A spline approximation of an elastica (blue) constrained by a target
spline (red). The end positions and tangents have been fixed.

remove these two control points from both the optimization and the constraints. The tangent
constraints just specify directions along which y2 and yn−1 can move. The length could
also be specified. In any case, we are no longer looking for the elastica that minimizes the
distance to x, but rather for an elastica that is ε-close x. If none of the constraints are active
at the end of the optimization we conclude that we have obtained an elastica which is closer
to the target spline than ε . This is of course only true up to the discretization error resulting
from using splines to model elastica. By refining the knot vector of the spline we obtain
a smaller discretization error, and we can validate the solution by checking the differential
equation (11). An example of this approach is shown in Figure 10.

A disadvantage of this method is that we cannot guarantee that our solution y is close to
an elastica – only that it has less bending energy than the input curve x. For this reason, we
have chosen to work with the analytic approach outlined in the previous subsection.

6. SURFACE RATIONALIZATION

Before a given CAD surface can be realized as a mould in the form of a collection of
EPS blocks it needs to be divided into patches. Each individual patch is approximated by a
surface swept by a hot blade, i.e., a surface foliated by planar elastic curves as described in
the previous sections.

In fact, we need to consider two processes: blocking and segmentation. Blocking is the
process of dividing a surface into blocks such that each block can be cut individually using
either a hot wire or a hot blade. Segmentation on the other hand is the process of dividing
the surface into patches swept by elastica or ruled patches. If blocking is performed before
segmentation, we simply divide the 3D shape into blocks and then fit the best possible ruled
or elastic surface patch to each block - possibly taking constraints between block boundaries
into account. Doing segmentation first is arguably harder, but has certain benefits: knowing
which segments intersect a given block can be used to inform the blocking procedure.

In the following, we consider a more concrete approach to segmentation in the context
where we assume that blocking has been performed first.
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We first consider the problem of approximating a single surface by a surface foliated by
planar elastic curves. One way to accomplish this is first to foliate the surface by planar
curves and then approximate these planar curves by elastica. That is, we intersect the sur-
face with a family of planes that are sufficiently overall transversal to the given surface,
and thereby foliate the surface by planar curves. We then pick a finite number of these
planes, approximate each of the corresponding planar sections with a segment of an elas-
tica, calculate endpoints, end tangents, and lengths and interpolate this data to obtain an
approximation of the original surface.

FIGURE 11. A simple approach to the rationalization of the red ellipsoid by
planar surfaces. No boundary conditions are enforced in this rationalization.

For the general case we imagine our CAD surface sitting inside a collection of EPS
blocks. This divides the surface into a collection of pieces each of which is the intersection
between a block and the full surface, see figure 11. We now approximate each of these
pieces by an elastica swept surface while demanding that neighbouring surfaces fit together
in a C1 fashion. This can be a large global optimization problem, and at the end we check to
see if the result is within the required tolerance. We then pick the blocks where the tolerance
is exceeded, cut these blocks in half and redo the optimization.

In the more complex approach, where segmentation (of the CAD surface) is performed
first, several options can be considered. One way is to fit the largest patch that upholds
the tolerance criteria to the surface and remove this part to create a reduced surface. This
procedure is repeated until the whole surface is removed, i.e., the original surface is covered
by patches. Another approach is a patch-growing algorithm as in [10]: A number of patches
grow on the surface and whenever two patches meet a competition determines the boundary
between the patches. The determining force in the competition is the improvement on the
Euler elastica sweep approximation, i.e., the resulting boundary is the one with the largest
combined improvement.

For fabrication, each patch needs to be divided into blocks, and this can be difficult on
the boundaries; either the blocks need to be cut smaller to align with the boundaries or
multiple elastica sweeps are needed, i.e., the block can be cut more than once by the blade.

A third option is a hybrid of the above mentioned methods, where the knowledge from
the patch methods guides the placement of the blocks.

7. EXAMPLE

To illustrate the procedures, we consider the modelling and construction of the skater
ramp shown in Figure 12. This CAD surface consists of spline surfaces, some of which are
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FIGURE 12. The skater ramp example.

doubly curved. The curved surfaces (see Figure 13) are the ones that need special moulds.
Here there are three different types: 1) three ruled parts (the “sides”), 2) two corners with
negative curvature at the front of the image and 3) two corners with positive curvature at
the back. We will approximate each corner by a surface swept by elastica. The ruled parts
can be cut either by the hot wire following the rulings or by the hot blade approximating
the curved cross section curve by an elastic curve.

FIGURE 13. The spline surfaces of the skater ramp must be approximated by
elastica swept surfaces

For each corner, the control points give rise to a set of planar spline curves which foliate
the surface (see Figure 14 left). These curves can be approximated by elastica as described
in Section 5.

If the splines are approximated independently, the control parameters for the resulting
elastica might differ quite a lot between two adjacent curves. This is because, for a typical
(uncomplicated) curve segment, there can be many different elastic curve segments that
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approximate it quite closely. To avoid large jumps in the control parameters we use the
elastica that approximates the first spline curve as the initial guess for the optimization at
the next spline, and so forth.

The optimization is performed with constraints: the approximating elastic curve is in
each case required to have the same length and the same end points as the original spline
curve. The resulting elastic curves can be seen in Figure 14 right.

FIGURE 14. The corner surfaces are foliated by planar spline curves (blue).
Each of these are approximated by an elastic curve (red).

Our optimization algorithm minimizes the square on the L2-distance between the spline
curve and the elastica, see (9). Table 1 shows some of these distance values.

Min Max Average
Negative 0,838846837 0,9107882 0,868163184
Positive 5,738445432 5,788943718 5,778703296

TABLE 1. The optimized value for the L2-distance for the two corner types. The
minimal value corresponds to the elastic curve which best approximates the spline.
The height of the ramp is 854.10 with the lengths of the spline curves varying
between 1342.6 and 1459.8.

For a visual inspection and evaluation of the result, in Figure 15 we have plotted the
spline and the approximating elastica in the worst case (i.e. highest L2 distance). For the
corner with negative curvature the curves are nearly indistinguishable. For the positively
curved corner, there is clearly a difference, but the overall shape is the same, and the ap-
proximation is certainly within any conceivable tolerance for this particular application.

8. CONCLUSION

Our work on approximating arbitrary spline curves by elastic curves, illustrated here by
the test case of the skater ramp, indicates that the problem of approximating most of the
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FIGURE 15. The original planar spline curve (black) on top of the approximat-
ing elastica (red). These are the worst cases for the corners with negative curvature
(left) and positive curvature (right).

FIGURE 16. Left: The surface is foliated by planar spline curves. Right: The
surfaces are foliated by elastic curves each one of which approximates the corre-
sponding spline in the figure to the left.

CAD surfaces used in architecture by panels of surfaces swept by planar elastica is feasible,
and that it can be effectively implemented into the work flow of modern robotics enhanced
constructions of buildings and other manifestations of architectural design, see also the
report in [13].

The utility of the technology depends now on the technical problem of designing blades
that can be heated and used to cut EPS in a consistent, robust and predictable way. We
have received positive experimental results and optimistic input from our project partners
showing that this blade technology can indeed be developed and made operational on the
scale needed.

In addition to the application to final production architecture, we anticipate that the theo-
retical framework described here will also have other industrial applications. For example,
rapid prototyping is an important part of the innovation pipeline. Proptotypes that are cur-
rently produced in EPS using CNC milling could be produced much more quickly using
hot blade cutting.

As is evident from our present description and also from the discussion of the state of
the art in Subsection 2.3 the full implementation of the various assets of the robotic Hot
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Wire/Blade cutting idea needs – to mention but one momentum, at least for the Building
Industries – an almost paradigmatic shift of attention away from the classical use of rel-
atively complicated scaffoldings and laths for the concrete shuttering of facade elements
that are not just off-the-shelf items. In comparison with the proposed applications of the
Hot Blade Cutting Technology, the classical way of facade production is often very labor
intensive, and often it even demands an extra time-consuming postprocessing, a fairing by
hand, in order to obtain the desired smoothness of the facades and surfaces. On a final note
we should also mention that this particular MaDiFa concept, that we have presented in this
chapter, offers one more genuine quality, which will also reduce transportation and logis-
tics costs considerably, namely that in this case the digital factory in question is essentially
mobile and can be set up for EPS cutting, assembling, and shaping on any location.
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