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ABSTRACT

Isometric Embeddings between Space Forms

David Brander

Advisor: Wolfgang Ziller

In 1901 D. Hilbert proved that there is no global isometric immersion of the

hyperbolic plane into 3-dimensional Euclidean space, despite the fact that there is

a local isometric embedding. Today it is known that there is a global isometric

immersion of H2 into E5 and a global isometric embedding into E6, but it is an open

problem whether these codimensions can be reduced. More generally, one can ask

what the minimal codimensions are for a local embedding, complete immersion and

global embedding of a simply connected space form Qn
c into another Qn+k

c̃ , where

the curvatures c and c̃ are not equal. This thesis seeks to present the best results

currently available with regard to this question. In particular, we will show that

the problem is solved for all cases apart from global immersions and embeddings of

negative extrinsic curvature (c < c̃), when c 6= 0. For these unresolved cases we show

that the upper bounds for the minimal codimensions are quite small by constructing

explicit embeddings and immersions. The worst case is that of embedding Hn
−1 into

Hn+k
−c2 , for −1 < −c2 < 0, where we only know that n− 1 ≤ k ≤ 5n− 5, and the best

unresolved case is that of immersing a sphere SnR into a smaller sphere Sn+k
r , where

we know that the minimal codimension is either n or n + 1. We also present those

non-existence results which are currently known.
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Chapter 1

Introduction

A space form is a complete connected Riemannian manifold of dimension n ≥ 2 and

constant sectional curvature c. Up to isometry, there is a unique simply connected

space form of dimension n and sectional curvature c, denoted here as Qn
c . The special

cases where c is -1, 0 or 1 are the standard hyperbolic, Euclidean and spherical spaces,

denoted Hn, En and Sn respectively.

In this thesis we will address the question: when is it possible to isometrically

embed, immerse or locally embed Qn
c into Qn+k

c̃ , where c 6= c̃. In particular, we would

like to know for each case what is the smallest codimension k for which this can be

done. Naturally, this codimension must be at least one, because the two manifolds

have different sectional curvature. The class of differentiability we are considering is

always C∞. One can obtain isometric embeddings in very low codimensions of class

C1 [14], but they do not preserve the differential geometric nature of the manifold
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in question, because curvature comes from the second derivative of the metric. It is

worthy of note that some of the global results we will give (specifically the immersions

and embeddings of the hyperbolic space with negative intrinsic curvature) are not real

analytic.

IfMn
c is a space form immersed into anotherMn+k

c̃ , then the difference in sectional

curvatures, c− c̃, will be called the extrinsic curvature. It turns out that the problem

of embeddings with positive extrinsic curvature is quite easy, and there is always

a global embedding in codimension one. Therefore, the majority of this thesis is a

discussion of the more problematic case of negative extrinsic curvature, where, in

most cases, only the local problem has really been given a sharp answer. An example

of the kind of thing that can happen is the following: the map f : (−∞, 0)×R→ E3

given by

f(x, y) = [
∫ x

0

√
1− e2tdt, exeiy],

where we have identified E3 with R × C, is an immersion with constant sectional

curvature −1. It looks like a horn enclosing the x1 axis in E3, with the wide end a

circle in the x2-x3 plane and the pointed end at x1 = −∞. It is a part of the hyperbolic

plane, but not the whole, because it is not complete, being clearly incomplete as a

metric subspace of E3. It is a famous theorem of Hilbert that there is in fact no

complete immersion of H2 into E3 - even though there is a local embedding. It is also

an interesting (and apparently still open) question whether the lowest codimension

needed for a complete immersion is the same as that required for a global embedding.
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It has been known for some time that there is a C∞ isometric embedding of any

Riemannian manifold into En for sufficiently large n [15], [8]. Since, as will be shown

below, En can be isometrically embedded into Hn+1, and also realised as a one-to-one

isometric immersion into a sphere of any radius of dimension 4n− 1, this means that

any Riemannian manifold can be isometrically embedded into Qn+k
c , for any c, if k is

large enough, with the caveat that if the manifold is not compact, and if c > 0, then

“embedding” must be replaced with “one-to-one immersion”. However, these general

embedding theorems require a very large codimension, and it turns out that, for

specific cases, much better results are obtained by constructing explicit embeddings.

Finally, why is it interesting to isometrically embed only simply connected space

forms? The answer is that this is a natural first step to the general problem of

embedding space forms, because any space form Mn
c has Qn

c as its universal cover.

Thus, for example, an isometric embedding of Qn
c into Qn+k

c̃ automatically gives an

isometric immersion of Qn
c into any space form Mn+k

c̃ . On the other hand, in order to

have a chance of embeddingMn
c into Qn+k

c̃ , it is necessary that there be an immersion

of Qn
c , which would be the lift of the desired embedding.

1.1 Notation and Preliminaries

Mn
c always stands for a Riemannian manifold of dimension n and constant sectional

curvature c. In addition to the designations mentioned above, it is also common to

use, for the sphere of radius r, the notation Snr instead of Qn
1

r2
, and when c < 0,
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Hn
c = Qn

c . A metric is usually denoted by g and the second fundamental form by h.

When a manifold is immersed in another manifold with the induced metric we will

usually use g for the metric on both spaces. It is often convenient to use the notation

eiα for the vector [cosα, sinα].

We will generally assume those definitions and results commonly taught in first

year graduate courses on Geometry and Topology. Assumptions more specific to

Riemannian Geometry can be found, for example, in [7]. The most important of

these are the definition of the curvature tensor R, which to every X and Y in the

tangent space TpM assigns a mapping R(X,Y ) : TpM → TpM given by

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

(where the expression does not depend on the extension of X, Y and Z to vector

fields in a neighbourhood of p), and Gauss’ equation

g(R(X,Y )Z, T ) = g(R̃(X,Y )Z, T ) + g(h(X,T ), h(Y, Z))− g(h(Y, T ), h(X,Z)),

which relates, through the second fundamental form h, the curvature tensor R̃ of a

manifold M̃ to the curvature tensor R of a submanifold M . The normal components

of R̃ will satisfy the Codazzi equation:

(R̃(X,Y )Z)⊥ = (∇⊥
Xh)(Y, Z)− (∇⊥

Y h)(X,Z),

(∇⊥
Xh)(Y, Z) := ∇⊥

Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).
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Chapter 2

Positive Extrinsic Curvature -

Umbilic Hypersurfaces

In this chapter we will show that if c̃ < c then there is always a codimension 1 global

isometric embedding of Qn
c into Qn+1

c̃ . Note that in this case the second fundamental

form is real-valued and, choosing an orthonormal basis in which it is diagonal, Gauss’

equation is

c− c̃ = h(ei, ei)h(ej, ej).

Since this must hold for all i 6= j, it follows (at least for n > 2) that h(ei, ei) =
√
c− c̃

for all i, and that the embedding will necessarily be totally umbilic. An isometric

immersion Mn into M̃n+1 is totally umbilic if at every point p of M , the second

fundamental form is proportional to the metric: g̃(h(X,Y ), η)(p) = λg(X,Y )(p),

where η is a unit normal and λ ∈ R. When the ambient space has constant sectional
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curvature, it follows that λ is a constant, independent of p ([7], page182).

2.1 0 < c̃ < c: Spheres inside Larger Spheres

In this case we want to embed a sphere into a higher dimensional sphere of lower

sectional curvature. This can be done as follows: Qn+1
c̃ is the sphere of radius

√

1
c̃
,

given by {x ∈ Rn+2 | x2
1 + ...+ x2

n+2 = 1
c̃
}. For any c > c̃, the set

S = {(x1, x2, ..., xn+1,
√
c̃−1 − c−1) ∈ Rn+2 | x2

1 + ...+ x2
n+1 =

1

c
}

is a sphere of radius
√

1
c
in Rn+1 ⊂ Rn+2 centred at (0, ..., 0,

√
c̃−1 − c−1). Since x ∈ S

satisfies x2
1 + ...+ x2

n+2 = 1
c̃
, S is a copy of Qn

c sitting inside Qn+1
c̃ . Both spheres have

metrics induced from that of En+2, so the embedding is isometric.

2.2 c̃ = 0 < c: Spheres into Euclidean Space

Qn
c is the standard sphere of radius

√

1
c
centred at the origin, Sn√

1
c

⊂ En+1.

2.3 c̃ < 0, c̃ < c : Hypersurfaces of Hn

We will show that one can isometrically embed a complete simply connected space

form of arbitrary curvature c > −1 as a totally umbilic hypersurface of Hn+1, the

standard hyperbolic space of constant curvature −1. After rescaling the metrics
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(multiplying the metric by k changes the sectional curvatures by 1
k
), this takes care

of all cases.

We take as our definition of Hn the half-space {x ∈ Rn | xn > 0}, with the

metric ḡij(x1, ..., xn) = x−2
n gij(x1, ..., xn), where gij = δij, the Euclidean metric. See

[7] Chapter 8 for a proof that Hn is complete and has constant sectional curvature

−1, as well as for further details of the following useful facts: two metrics ḡ and

g on a manifold M are said to be conformal if ḡ = µg for some positive function

µ : M → R. Essential to our construction is the fact that an umbilic immersion

is still umbilic after a conformal change of the ambient metric: suppose we have an

umbilic immersion so that g̃(h(X,Y ), η) = λg̃(X,Y ), where η is a unit normal. If

¯̃g = µg̃ is the conformal change, then η
µ
is the unit normal with respect to ¯̃g and,

after calculating the corresponding second fundamental form we obtain:

¯̃g(∇̄XY,
η

µ
) = λ̄¯̃g(X,Y ), (2.1)

λ̄ =
2λµ− η(µ)

2µ
√
µ

. (2.2)

Now consider the hypersurface Sn(t) ⊂ Rn+1, a sphere of radius 1 centered at

(0, 0, ..., 0, 1 + t). It is a totally umbilic hypersurface of En+1 with λ = 1. Our

metric ¯̃g on Hn+1 is conformal to the Euclidean metric with µ = x−2
n+1. Therefore the

intersection of Sn(t) with the upper half-space is also a totally umbilic hypersurface

S̄n(t) of Hn+1. If η is a unit normal to this sphere in En+1, then η̄ = x2
n+1η is the

unit normal in Hn+1, and using (2.1) we have the second fundamental form

h̄(X,Y ) = λ̄¯̃g(X,Y ),
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λ̄ =
2x−2

n+1 − η(x−2
n+1)

2x−3
n+1

.

We know λ̄ is constant, so we can calculate it conveniently at a point such as p =

(1, 0, ..., 0, 1 + t) where η(xn+1) = 0, obtaining

h̄(X,Y ) = (1 + t)¯̃g(X,Y ).

It is now easy to compute the sectional curvatures of S̄n(t) using Gauss’ equation:

c = −1 + (1 + t)2

= t2 + 2t.

The map [t 7→ t2 + 2t] is a one-to-one increasing bijection from (−1,∞)→ (−1,∞),

with inverse t = −1 +
√
1 + c. We thus have, for every c > −1, a totally umbilic

hypersurface Sc = S̄n(−1 +
√
1 + c) of Hn+1, with constant sectional curvature c.

It is not hard to see that these hypersurfaces are complete: recall first that by a

theorem of Hopf and Rinow (see [7]) geodesic completeness is equivalent to metric

completeness with respect to the distance function induced by the Riemannian met-

ric. Now suppose that {pn} is a Cauchy sequence in Sc. Because small Euclidean

distances correspond to arbitrarily large hyperbolic distances as you move closer to

the plane xn+1 = 0, it is easy to show that the Cauchy property implies that there

exists an ε > 0 such that the entire Cauchy sequence is contained in the half-space

Hε := {xn+1 > ε}. Now the sphere Sn(t) is complete and so, therefore, is the closed

subset Sn(t) ∩ H̄ε (where the closure H̄ε = {xn+1 ≥ ε}). But on H ε
2
, which contains

8



this set, the metric of Sc is conformal to the spherical metric induced from En+1 by

a conformal factor which is both bounded above and bounded below by a positive

constant. This means that the two distance functions are equivalent, so that conver-

gence of Cauchy sequences coincides for the two metrics. In other words, Sn(t) ∩ H̄ε

is also complete in the metric of Sc, and therefore the sequence converges.
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Chapter 3

Negative Extrinsic Curvature:

Local Results

From now on, we will only be dealing with the case c < c̃.

3.1 A Non-Existence Result

Proposition 3.1 (Otsuki [17], Cartan [5].) Let c < c̃. There is no (local) isometric

embedding from Mn
c into M̃2n−2

c̃ .

Proof: Let p ∈M . For any orthonormal vectors X,Y ∈ TpM , Gauss’ equation says:

0 > c− c̃ = g̃(h(X,X), h(Y, Y ))− ‖h(X,Y )‖2. (3.1)

The key point in the proof is that given any X in TpM , the codimension n−2 is small

enough to guarantee that we can always find some Y ∈ TpM , linearly independent
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from X, such that the last term in (3.1) is zero. If we then choose our X to minimize

a judiciously chosen function f on the (compact) unit sphere UTpM in TpM , then

the first term on the right hand side of (3.1) will be positive, a contradiction.

Firstly, we can write h = h1ξ1 + ... + hn−2ξn−2, where each hi is a symmetric bi-

linear form on TpM and ξi span the normal space at p. We have, for fixed X ∈ TpM ,

the vector spaces Vi = {Z ∈ TpM | hi(X,Z) = 0} of dimension at least n− 1. Thus

the space {Z ∈ TpM | h(X,Z) = 0}, being the intersection of these, has dimension at

least n− (n−2) = 2. Consequently, there is a vector Y , linearly independent from X,

such that h(X,Y ) = 0. Note that, with (3.1), this implies that h(X,X) is non-zero

for any X ∈ TpM .

Now take X to be a minimum for the map f : UTpM → R taking X 7→

g̃(h(X,X), h(X,X)). The assumption that X is a critical point for this map implies

that the vector Y found above is orthogonal to X. To see this, we can differentiate f

using the fact that g̃ and h are symmetric and bilinear to get:

dfX(Z) = 4g̃(h(X,X), h(X,Z)).

This expression must be zero for any Z ∈ TX(UTpM) = {Z ∈ TpM | g(X,Z) = 0}.

Now write Y = aX + Z, with g(X,Z) = 0. Since h(X,Y ) = 0, we have

0 = g̃(h(X,X), h(X,Y ))

= ag̃(h(X,X), h(X,X)) + g̃(h(X,X), h(X,Z)).

11



Our choice of Z makes the last term zero, and we previously observed that h(X,X)

is non-zero. It follows that a must be 0 and Y is thus orthogonal to X. Normalizing

Y to be of unit length, this gives us a curve γ(t) = cos(t)X + sin(t)Y in UTpM , with

γ(0) = X.

Finally, we use the fact that f has a minimum on UTpM at X, and the second

derivative test on f(γ(t)), namely:

d2

dt2
|t=0f(γ(t)) ≥ 0.

To compute this inequality, observe that on expanding f(γ(t)) half the terms are zero

because they contain h(X,Y ) and we are left with

f(γ(t)) = cos4(t)g̃(h(X,X), h(X,X)) + sin4(t)g̃(h(Y, Y ), h(Y, Y ))

+ cos2(t) sin2(t)g̃(h(X,X), h(Y, Y )).

At t = 0 the second derivatives of these trigonometric coefficients are -4, 0 and 2

respectively, so the inequality becomes

−4g̃(h(X,X), h(X,X)) + 2g̃(h(X,X), h(Y, Y )) ≥ 0.

In other words, g̃(h(X,X), h(Y, Y )) > 0, contradicting (3.1). ♠

Remark: The assumption of constant sectional curvatures is not necessary. The

proof holds as long as at one point p the difference between the sectional curvature

of M and of M̃ is strictly negative for any 2-plane in TpM .
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3.2 The Second Fundamental Form

In the next section we will prove that the result in the previous section is sharp,

that is to say, there is always an embedding of a neighbourhood of any point in M n
c

into M̃2n−1
c̃ . Before proving this, we will first study the local structure of the second

fundamental form in codimension n− 1. This will be useful for global non-immersion

results later.

Most of the results, both local and global, in this critical codimension rely to a

great extent on work of Elie Cartan and, later, John Douglas Moore, which resulted

in the following interesting fact:

Theorem 3.1 (J.D. Moore [13].) SupposeMn
c is isometrically immersed in M̃2n−1

c̃ .

Then:

1. Both the first and second fundamental forms of the immersion can be diago-

nalized simultaneously. The frame, e1, ..., en, which does this is unique up to

permutations and changes of signs.

2. Locally there is an orthogonal coordinate system (principal coordinates) whose

tangent directions are ei. If M is simply connected these coordinates are well-

defined globally.

3. If M is complete and simply connected then the the principal coordinates define

a diffeomorphism from Rn to M .
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The proof depends on an algebraic result of E. Cartan, which we will state here,

but postpone the proof of until the end of this section. Let V be an n-dimensional

real vector space and Φ1, Φ2, ..., Φn be symmetric bilinear forms on V . Φi are said

to be exteriorly orthogonal if, for all X, Y, Z, W ∈ V we have

n
∑

i=1

[Φi(X,Y )Φi(Z,W )− Φi(X,W )Φi(Z, Y )] = 0. (3.2)

Theorem 3.2 (E. Cartan [5].) Let Φ1, ...,Φn be n exteriorly orthogonal symmetric

bilinear forms on V , which in addition have the following property: whenever X is a

vector such that Φi(X,Y ) = 0 for all 1 ≤ i ≤ n and for all Y ∈ V , then X = 0. Then

there exists a real orthogonal matrix A and n linear functionals φ1, ..., φn such that

Φi =
∑

j

Aijφ
j ⊗ φj, 1 ≤ i ≤ n.

In other words, Φi are simultaneously diagonalized with respect to the basis dual to

φi.

Note that if we have an immersionMn
c into N 2n

c then Gauss’ equation applied with

an orthonormal frame ηi for the normal bundle exactly says that the n components,

hi = g(h, ηi), of the second fundamental form are exteriorly orthogonal on the tangent

space, TpM , at a point p. If, moreover, one of the hi is definite, the second condition

required in the theorem will be satisfied.

We can achieve this situation as follows: locally M̃2n−1
c̃ is simply connected, so we

can regard our immersion as Mc → Q2n−1
c̃ → Q2n

c , where the last map is the umbilic

inclusion described in chapter 2. Choose a basis ηi for the normal space such that

14



ηn is the normal to Q2n−1
c̃ in Q2n

c . The second fundamental form of the immersion

M into Q2n
c is of the form h = h̃ + hnηn, where h̃ is the second fundamental form of

the original immersion into Q2n−1
c̃ , and hnηn is the second fundamental form of the

umbilic inclusion. Then hn =
√
c̃− cg, a positive constant multiplied by the metric

of Q2n
c , and is therefore positive definite. Applying the theorem, we can now assume

that each hi is diagonal. Since hn is proportional to the metric, the diagonalizing basis

for TpM also diagonalizes the metric, and, after rescaling, we have an orthonormal

basis e1, ..., en.

We still need to prove the uniqueness of ei. Choose a basis for the normal space

to makes things simple. Consider the vectors Ni = h(ei, ei) =
∑

j h
j(ei, ei)ηj, where

ηj are as above. Since its last component is hn(ei, ei) =
√
c̃− cg(ei, ei), it follows that

each Ni is certainly non-zero. Moreover, Gauss’ equation says

0 = g(h(ei, ei), h(ej, ej))− ||h(ei, ej)||2,

where the last term is zero because h is diagonal, implying that Ni are mutually

orthogonal. Therefore, we can take ξi = Ni/||Ni|| as an orthonormal basis for the

normal space. In this basis,

h(ei, ej) = δij

√
c̃− c

αi
ξi,

where

αi =

√
c̃− c

||Ni||
,

∑

i

α2
i = 1.
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The last identity follows from the fact that αi are in fact the components of the

unit umbilical normal ηn with respect to the basis ξi, calculated by g(ηn, ξi) =

g(ηn, h(ei, ei)/||Ni||) =
√
c̃− c/||Ni||.

Now each vector ei is the only eigenvector with non-zero eigenvalue for the matrix

hi = g(h, ξi). Therefore, up to changes of sign, the basis {ei} is the only basis which

simultaneously diagonalizes hi in this normal frame. But a change of normal frame

does not affect whether hi are diagonal or not, which proves uniqueness. Thus we

have proved the first part of Theorem 3.1.

For the second part, it is straightforward to verify that Codazzi’s equations are

equivalent to

∇eiej =
∑

k

τ kj (ei)ek, (3.3)

∇⊥
ei
ξj =

∑

k

ωkj (ei)ξk, (3.4)

τ ji (ej) =
1

αj
ei(αj), (3.5)

ωji (ej) =
1

αj
ej(αi), (3.6)

where i 6= j and the connection coefficients not stated are all zero. Using this, it is

easy to check that the orthogonal (but not orthonormal) vector fields

Xi = αiei

have mutually vanishing Lie brackets. By Frobenius’ theorem one can therefore inte-

grate them to get a local orthogonal coordinate system.

Finally, if M is simply connected, a consistent global choice of frame {ei} (and

16



therefore Xi) is arranged as follows: {ei} are uniquely defined at any point, up to

permutations and changes of sign. Fix a choice at some point p. If q is any other

point, take a path from p to q. On a small neighbourhood of p there is only one

choice of smooth frame {ei} which will agree with our choice at p, because permuting

or changing signs is not a continuous operation. We can continue this along the path

to q, to get a unique choice at q. This is independent of path, because M is simply

connected, so any path from p to q can be continuously deformed into any other,

taking the frame with it.

The last statement of the theorem follows because if M is complete then the flows

φi(x0, ti), which are the principle coordinates through some point x0, are complete.

Hence one can show that the map

Φ(t1, ..., tn) = φ1(...φn−1(φn(x0, tn), tn−1)...t1)

is a covering map Rn →M . ♠

Remark: The presentation given here differs slightly from Moore’s, in that we make

use of the umbilic inclusion to get simple expressions for the connection coefficients.

This analysis has been known for some time, and can be found in [6].

Proof of Theorem 3.2: We will show that the theorem follows from the fact that

a collection of matrices which commute pairwise can be simultaneously diagonalized.

The bilinear form Φi may be regarded as a linear map V → V ∗, inducing a linear
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map Φi ∧ Φi : V ∧ V → V ∗ ∧ V ∗, which acts by the rule:

Φi(x) ∧ Φi(y)(z ∧ w) = 1

2
[Φi(x, z)Φi(y, w)− Φi(x,w)Φi(y, z)].

Thus, Φi are exteriorly orthogonal if and only if

∑

i

Φi ∧ Φi = 0.

Setting Φ = [Φ1, ...,Φn]t, we are required to prove that there exists a real orthogonal

matrix A such that Φ = AΨ, where each component Ψj = ±θj⊗θj, and θj are linear

functionals. The last condition is equivalently stated as

Ψj ∧Ψj = 0. (3.7)

Fact: There exists a vector X ∈ V such that Φi(X), i = 1, ..., n, are linearly

independent.

We will prove the fact later. Now let v1, ..., vn be a basis for V such that Φi(v1)

are linearly independent. Then we can write

Φi(vk) =
∑

j

C(k)ijΦ
j(v1).

Substituting this expression and v1 into the condition (3.7),

∑

i

Φi(v1) ∧ Φi(vk) = 0,

we see that the matrices C(k) are symmetric. Now do the same with vj and vk, to

get

∑

i,m,n

C(j)imC(k)inΦ
m(v1) ∧ Φn(v1) = 0,
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which means that

C(j)imC(k)in = C(j)inC(k)im.

Together with the fact that C(i) are symmetric matrices, this implies that they all

commute pairwise. Therefore they can be simultaneously diagonalized, i.e. there is

an orthogonal matrix A, such that AC(k)At = D(k) is diagonal for all k. Now set

Ψ = AΦ, and we have

Ψ(vk) = AC(k)Φ(v1)

= AC(k)AtΨ(v1)

= D(k)Ψ(v1).

It follows that Ψ(vi) ∧Ψ(vj) = 0, because each component is of the form λ1Ψ
i(v1) ∧

λ2Ψ
i(v1).

It remains to prove the existence of a vector X such that Φi(X) are linearly

independent. Assume the contrary. For any vector Z ∈ V , let U(Z) be the subspace

of V ∗ generated by Φi(Z), i = 1, ..., n, and let M be a vector such that U(M) has

maximal dimension p < n. Without loss of generality, assume that Φ1(M), ...,Φp(M)

are linearly independent, and Φi(M) = 0 for i > p. For any other vector Y , we have

p
∑

i

Φi(M) ∧ Φi(Y ) = 0,

thus for i ≤ p, we can write

Φi(Y ) =
p

∑

j=1

cijΦ
j(M),
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where cij are symmetric. This means that the subspace W of V ∗ defined by

W = {Φi(Z)| Z ∈ V, i ≤ p}

is of dimension p, and therefore there is a vector Z in V which is annihilated by W .

By the second hypothesis of the theorem, there exists λ and a vector N ∈ V such that

Φλ(Z,N) 6= 0, and it follows that p < λ ≤ n. If ε is sufficiently small, the covectors

Φi(M + εN) = Φi(M) + εΦi(N), 1 ≤ i ≤ p, will still be linearly independent, and

so they will generate the p-dimensional subspace W , since they all lie inside W . But

Φλ(M + εN) = εΦλ(N) is non-zero and not in W , and so U(M + εN) has dimension

at least p+ 1, a contradiction. ♠

3.3 Explicit Local Embeddings

There is more than one way to prove that local embeddings of negative extrinsic cur-

vature always exist in codimension n−1. One possible proof would proceed as follows:

using the coordinates and connection coefficients described in the previous section,

one can show that the Gauss, Codazzi and Ricci equations for such an embedding are

equivalent to a system of non-linear PDEs for the functions αi and some functions fij

which are derivatives of αi in the principle directions. One can then show that this

so-called “generalized sine-Gordon equation” does indeed have a local solution, given

arbitrary initial conditions along certain curves [6]. The solutions then integrate up,

using the fundamental theorem of submanifold theory, to give a local embedding with
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the corresponding extrinsic curvature.

Rather than go through the details of that here, we will prove the same fact by

giving explicit local embeddings of Qn
c into Q2n−1

c̃ for c < c̃.

3.3.1 0 < c < c̃: A Portion of a Sphere Embedded into a

Smaller Sphere

It will be convenient here to use the warped product representation of the unit sphere

Sn, n > 1, namely the set (0, π)× Sn−1, with the metric dx2 + sin2(x)dσ2, where dσ2

is the metric on Sn−1. See, for example, [18], page 14, for an embedding of this metric

into Sn. We are going to isometrically embed a small open subset of Sn into S2n−1
R ,

where R is an arbitrary number between 0 and 1. After rescaling, this proves all the

cases.

Proceeding by induction on n, it is clear that a sufficiently small portion of S1

can be embedded isometrically into S1
R for any R < 1. So assume that we have

an open set U ⊂ Sn−1 and, for some arbitrarily small positive r, an embedding

f : U → S2n−3
r ⊂ E2n−2, such that the pullback metric is f ∗gE2n−2 = dσ2 (the metric

of Sn−1). Now define F : (0, π)× U → E2n by

F (x,y) = [α(x)eiβ(x), sin(x)f(y)],
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where the functions α and β are to be defined. We have

g(F, F ) = α2(x) + sin2(x)g(f(y), f(y))

= α2(x) + sin2(x)r2,

which follows from our assumption on f . We want f(U) ⊂ S2n−1
R , so it is required

that the right hand side of the above equation be equal to R2. Solving this for α, we

obtain

α(x) =
√

R2 − r2 sin2(x).

This is a well defined analytic function for sufficiently small r. We also want the pull-

back metric to be dx2+sin2(x)dσ2. Writing dσ2 =
∑

i,j σijdy
idyj, for some coordinates

yj on U , we immediately have

g(Fyi , Fyj) = sin2(x)σij,

g(Fx, Fyi) = cos(x) sin(x)g(f, fyi)

= 0.

The last equality is due to the fact that f takes its values in a sphere, and fyi is

tangent to the sphere. Thus, all that is required now is the following equality:

g(Fx, Fx) = (α′(x))2 + (α(x)β ′(x))2 + r2 cos2(x) = 1.

Solving this for β ′ we require

β′(x) =

√

√

√

√

1− (α′(x))2 − r2 cos2(x)

(α(x))2
.
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Now α′(x) = −r2 sin(2x)
2α(x)

, so the equation above becomes

β′(x) =
1

α(x)

√

√

√

√1− r2(cos2 x+
r2 sin2(2x)

4α2(x)
).

Observing that α(x) is arbitrarily close to R in value, for sufficiently small r, it follows

that β ′(x) is well defined for all x ∈ (0, π), and so is β(x) =
∫ x
0 β

′(t)dt on the same

interval. In other words, this is an isometric embedding (0, π)× U → S2n−1
R .

3.3.2 c = 0 < c̃: The Clifford Torus

Consider the Clifford torus f : En → S2n−1
R ⊂ E2n, given by

f(x1, ..., xn) =
R√
n
(ei

√
n

R
x1 , ..., ei

√
n

R
xn).

This satisfies g(f, f) = R2, so f is a map from En into S2n−1
R , and g(fxi , fxj) = δij,

so it is an isometry. f is periodic in each xi, with period P = 2πR√
n
. When restricted

to a fundamental domain D = (0, P )× ....× (0, P ) it is an embedding.

3.3.3 c < 0: Local Embeddings of Hyperbolic Space

For these embeddings we will use the complete hyperbolic metric on Rn given by

dx2 + e2x(dy2
1 + ... + dy2

n−1). The map φ : (Rn, g) → Hn, φ(x) = (e−x1 , x2, ..., xn)

is easily checked to be an isometry with the upper half space model Hn = {x ∈

Rn | x1 > 0}, with the metric gHn = x−2
1 (dx2

1 + ... + dx2
n).

There is a well-known (non-complete) embedding of our metric into E2n−1, defined
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by f : (−∞, 0]×Rn−1 → E2n−1,

f(x, y1, ..., yn−1) = [
∫ x

0

√
1− e2tdt,

ex√
n− 1

[ei
√
n−1y1 , ..., ei

√
n−1yn−1 ]].

It is straightforward to verify that g(fx, fx) = 1, g(fx, fyi) = 0 and g(fyi , fyj) = δije
2x,

so it is an isometry. It is an immersion, and therefore a local embedding.

For the other two cases, it is sufficient to construct a local embedding of Hn into

Q2n−1
c̃ , where either −1 < c̃ < 0 or c̃ > 0. A construction was outlined by W. Henke

in [10] as follows: for Hn into S2n−1
R , define

f(x,y) = [α(x)eiβ(x),
ex

λ
eiλy1 , ...,

ex

λ
eiλyn−1 ]

The equations that we must satisfy are then

g(f, f) = α2(x) +
(n− 1)e2x

λ2
= R2,

g(fx, fx) = (α′(x))2 + (α(x)β ′(x))2 +
4(n− 1)e2x

λ2
= 1,

g(fx, fyi) = 0,

g(fyi , fyj) = e2xδij.

The last two equations are automatically satisfied, and it is a simple matter to solve

the first two (locally) for α(x) and β(x), by taking the constant λ sufficiently large.

To locally embed Hn into the hyperbolic space H2n−1
c̃ , one can use an almost identical

construction, but here taking H2n−1
c̃ as a subset of R2n equipped with the Lorentzian

inner product h, defined by h(x, y) = −x1y1 + x2y2 + ... + x2ny2n. It is well-known

that the set {x ∈ (R2n, h) : h(x, x) = c̃−1}, with the induced inner product (which
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becomes positive definite) is H2n−1
c̃ . Define f as above, except replacing α(x)eiβ(x)

with α(x)[cosh(β(x)), sinh(β(x)]. The construction then follows more or less as before.
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Chapter 4

Complete Immersions of Negative

Extrinsic Curvature

In contrast to the situation of positive extrinsic curvature, we will see that here local

embeddability does not imply the existence of a complete immersion.

4.1 0 = c < c̃: Euclidean into Spherical

This is the simple case: En can be completely immersed into a sphere S2n−1 of any

radius r in the form of a Clifford torus S1
r1
× ... × S1

rn
, where

∑

r2
i = r2, with the

metric induced from the sphere. Being a product of 1-dimensional manifolds, it is a

flat embedding of the n-torus, which has En as it’s universal cover.
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4.2 0 < c < c̃: Spheres into Spheres

Here we have our first non-existence result, in spite of local existence. Namely, there

is no complete isometric immersion of the sphere SnR into S2n−1
r for R > r, since, by

Moore’s result, Theorem 3.1, the principal coordinates would define a diffeomorphism

between Rn and the sphere SnR.

However, we can immerse any sphere SnR into S2n+1
r , by composing a Clifford torus

immersion of En+1 into S2n+1
r with the natural embedding of the sphere SnR in En+1.

This leave open the problem of an immersion of codimension n. See Lemma 5.1

below for a continuous embedding of Sn into S2n
R , R < 1, which is a C∞ isometry on

the complement of a submanifold of dimension n− 2.

4.3 c < 0 : Immersing Hyperbolic Space - Some Con-

structions

This is where there are many questions still unanswered. It is known that complete

immersions are always possible, but we don’t appear to have a good idea what the

smallest codimension is yet, except that it is not too large. The following proposition

is an improvement by Wolfgang Henke on some results of Danilo Blanusa [2], [3].
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Proposition 4.1 (W. Henke [9], [10].) There is a complete isometric immersion

of Hn into Q4n−3
c̃ for all c̃ > −1.

Outline of the Proof: The proof is based on a modification of Blanusa’s ([2], [3])

original embedding of H2 into E6, and of injective immersions (but not embeddings)

of Hn into E6n−5 and into S6n−4√
c̃−1

. In the chapter on embeddings below, we give a

complete proof of an isometric embedding of Hn into E6n−6 which illustrates the

idea. It would be helpful for the reader to read that before continuing here. Also

compare with the local embeddings in Section 3.3.

On examination of the construction of the embedding F : Hn → E6n−6, it is

clear that it is the simplest possible generalization of Blanusa’s embedding H 2 → E6.

Consequently, there is a lot of redundancy. First, by dropping the requirement that it

be an embedding, one can construct an immersion of the form (f0(x), f(x, y)) : H
2 →

E1 × E4 = E5. Using the upper half-plane model of H2, with metric 1
x2 (dx

2 + dy2),

the function f which works is

f(x, y) =
1

x
[
φ1(x)

s1(x)
eis1(x)y,

φ2(x)

s2(x)
eis2(x)y],

where si(x) are piecewise constant and φi(x) are smoothing functions. By taking

si(x) sufficiently large on their intervals of constancy, it is not difficult to solve for

f0(x) to make this an isometric immersion.

This extends naturally to an isometric immersion Hn → E4n−3

F (x, y1, ..., yn−1) = [f0, f(x, y1), ..., f(x, yn−1)].
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For immersions into Q4n−3
c̃ , with c̃ 6= 0, there is a similar map with an extra compo-

nent, Hn → R4n−2

G(x, y1, ..., yn−1) = (f0(x), f1(x), f(x, y1), ..., f(x, yn−1)),

but this time with an extra condition, namely g̃(G,G) = 1
c̃
, where g̃ is the Euclidean

or Lorentzian inner product to get the spherical or hyperbolic case respectively. ♠

Remarks

• This gives us an isometric immersion of H2 into E5. It is still an open problem

whether or not it can be done into E4 (see below for E3).

• It appears that for n > 2, all immersions have been simple generalizations of an

isometric immersion H2 → Em. It therefore seems likely that better results could be

obtained for n > 2. A step in this direction, perhaps, is a result of Azov [1], which

for n > 2 gives isometric immersions of Hn into E4n−4 and S4n−4.

4.4 Non-Immersibility of the Hyperbolic Plane

To date we only have one non-existence result for complete immersions of Hn into

Qn+k
c̃ , for k ≥ 2n − 1, and this only for H2. But it is important, because it tells us

that the local and global (immersion) problems are not the same.

29



Theorem 4.1 (D. Hilbert [12]): There is no complete immersion of H2 into Q3
c̃,

for any c̃ > −1.

Proof: Recall that by, Theorem 3.1, such an immersion would imply the existence of

a diffeomorphism from R2 to H2, given by the principal coordinates, whose direction

fields are Xi = αiei. Using the umbilical inclusion of Q3
c̃ into H4, we have, by

equations (3.5) and (3.6), for i 6= j:

∇̄eiej =
∑

k

τ kj (ei)ek + δij

√
c̃+ 1

αi
ξi,

∇̄eiξj = −δij
√
c̃+ 1

αi
ei +

∑

k

ωkj (ei)ξk,

τ ji (ej) =
1

αj
ei(αj),

ωji (ej) =
1

αj
ej(αi),

where ∇̄ is the connection on H4. The assumption that this is indeed the connection

on H4 means that we must have g(R̄(e1, e2)e2, e1) = −1. Calculating this with the

connection given above, one obtains the equation

1

α1

e2e2(α1) +
1

α2

e1e1(α2) = 1 + c̃

Since α2
1 + α2

2 = 1, we may set α1 = cos ω
2
, and α2 = sin ω

2
, where 0 < ω < π,

because αi are both positive. We can rewrite the equation in terms of the coordinate

directions and ω, to get

X1X1(ω)−X2X2(ω) = (1 + c̃) sinω.

30



Changing to coordinates such that

∂

∂u
= X1 +X2 = α1e1 + α2e2,

∂

∂v
= X1 −X2 = α1e1 − α2e2,

the PDE is equivalent to

∂2ω

∂u∂v
= (1 + c̃) sinω, 0 < ω < π. (4.1)

Note that both ∂
∂u

and ∂
∂v

have unit length and that the angle between them is ω,

therefore the area form on H2 with respect to these coordinates is dA = sinωdudv.

So we can use the equation (4.1) to calculate the area of a rectangle in H2 which is

the image of [a, b]× [c, d] in these coordinates:

A =
1

1 + c̃

∫ b

a

∫ d

c

∂2ω

∂u∂v
dudv

=
1

1 + c̃

∫ b

a
(
∂ω

∂u
(u, d)− ∂ω

∂u
(u, c))du

=
1

1 + c̃
{ω(b, d)− ω(a, d)− ω(b, c) + ω(a, c)}.

Since 0 < ω < π, it follows that the area of the rectangle is less than 2π
1+c̃

. But u

and v are a global coordinate system for H2, being a linear change of variables of the

principle coordinates. This means that the area of the entire hyperbolic plane must

be bounded by 2π
1+c̃

, and this is a contradiction, because it is easy to check that H2

has infinite area. ♠

Remark: Hilbert’s theorem was originally proved for the case c̃ = 0. It has long

been conjectured that an analogous result holds in higher dimensions, specifically that
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there is no complete immersion of Hn into E2n−1. Some results have been obtained

with special extra conditions - for example it has been proved that if a space-form

Mn
−1 is not simply connected then it cannot be immersed into E2n−1 [16]. However

it is essential to the proof given that the fundamental group is non-trivial. See the

survey [4] for other results.
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Chapter 5

Global Embeddings of Negative

Extrinsic Curvature

5.1 0 < c < c̃: Spheres inside Smaller Spheres

Any sphere of radius R and dimension n can be embedded in any sphere of smaller

radius r of dimension 3n+ 2 in the following way: define f : En+1 → E3n+3 by

f(x1, ..., xn+1) = (ax1, ..., axn+1, be
ix1 , ..., beixn+1)

where a and b are constants satisfying a2 + b2 = 1. Restricting f to SnR ⊂ En+1, we

have

g(f, f) = a2R2 + (n+ 1)b2,

g(fxi , fxj) = δij(a
2 + b2) = δij.
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Thus f is an isometry, and it is an embedding as long as we choose a non-zero. The

image, f(SnR) is contained in a sphere of radius
√

a2R2 + b2(n+ 1) =
√
n+ 1+δ, if we

take a close to zero. Taking a sufficiently small, we can always embed an arbitrarily

large sphere SnR into S3n+2
δ+

√
n+1

, for δ arbitrarily close to zero, in this way. Rescaling,

this proves the claim.

Remark: It should be possible to do much better than this. For example, if

n < 9, and the difference in size of the spheres is not too large, the Clifford torus

in S2n+1
r contains an embedding of a sphere of radius R > r. Explicitly, define

f : En+1 → E2n+2 by

f(t1, ..., tn+1) =
r√
n+ 1

(e
i
√
n+1
r

t1 , ..., e
i
√
n+1
r

tn+1).

As mentioned before, this is an isometric immersion, periodic in each ti, with period

P = 2πr√
n+1

, and an embedding when restricted to D = (0, P )× ....× (0, P ). We can fit

an n-sphere of radius R = P/2− ε = πr√
n+1

− ε, where epsilon is arbitrarily small, into

D, embedding SnR into S2n+1
r . R will be larger than r if and only if π >

√
n+ 1(1+ ε),

that is, if and only if n+ 1 ≤ 9.

We also have:

Lemma 5.1 There is a continuous embedding of Snr into S2n
R , for any radius R < r

which is a C∞ isometry at every point except on a submanifold of dimension n− 2.

Proof: It is sufficient to give an embedding of Sn into S2n
R where R is any radius

less than 1. An argument almost identical to the local argument (in a different
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codimension) given in Section 3.3.1 works: it is clear that the unit circle S1 can be

embedded isometrically into S2
R for any R. Now assume that there is an embedding

of the sort required, f : Sn−1 → S2n−2
r ⊂ E2n−1, where r is very small. Define

F : (0, π)× Sn−1 → S2n
R ⊂ E2n+1 by

F (x,y) = [α(x)eiβ(x), sin(x)f(y)].

Then, as in Section 3.3.1, F will be an isometry into S2n
R if and only if the functions

α(x) =
√

R2 − r2 sin2(x),

β(x) =
∫ x

0

1

α(t)

√

√

√

√1− r2(cos2 t+
r2 sin2(2t)

4α2(t)
)dt

are well defined, and this will be the case for small r. The only problem is that

U = (0, π) × Sn−1 is not quite the whole of Sn. The map φ : U → Sn given by

φ(t,x) = (sin(t)x, cos(t)) is an isometry between U and Sn − {p, q}, where p, and q

are the north and south poles respectively. We need to define F at at p and q, which

is easy: the limits

lim
z→p

F (z) = [R, 0, ..., 0],

lim
z→q

F (z) = [Reiβ(π), 0, ..., 0],

exist. Therefore defining F to have those values at p and q respectively gives a con-

tinuous function from the whole of Sn into S2n
R , which is C∞ except at the bad points

of f , which are the product (0, π)×M , and M is a submanifold of Sn−1 of dimension

n− 3, and at the points p and q (one can check that the function is not differentiable
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at these points). ♠

Remark: Any immersion of S2 into S4 of the form F : (0, π)× S1 → S4
R ⊂ E5,

F (x,y) = [a(x), b(x), sin(x)f(y)],

where f is an embedding of S1 into S2, will necessarily only be continuous at the

North and South poles, because, in the isometry given above, x = cos−1(y3), where

yi are the coordinates of E3, so sin(x) =
√

1− y2
3 and its first derivative blows up as

y3 → 1.

5.2 c ≤ 0 < c̃ : Hn and En into a Sphere

There can be no embedding of Hn or En into a sphere on topological grounds - the

image would have to be compact, being a closed subset of a compact space. However,

it is interesting to note that, as was previously mentioned, Blanusa constructed one-

to-one immersions of Hn into spheres of arbitrary radius of dimension (6n−5) [2], [3].

It is also possible to have a one-to-one immersion of En into a sphere, for example as

a product γ1 × ... × γn ⊂ S4n−1, where each γi is a one-to-one immersion of the real

line into a 2-torus.
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5.3 Embedding Hn into E6n−6

We give here a complete proof of a generalization of Blanusa’s isometric embedding

of H2 into E6 [2]. The proof is representative of the methods used in the results of

Blanusa and Henke.

Proposition 5.1 (W. Henke, W. Nettekoven [11].) The metric g−1 = dx2+e2x(dy2
1+

... + dy2
n−1) on R

n, which is complete with constant sectional curvature −1. can be

embedded into E6n−6 as the graph of a C∞ function Rn → R5n−6.

Proof: We will first give Blanusa’s [2] embedding of H2 into E6. The metric

gc = dx2 + cosh2(x)dy2 is complete with constant curvature -1 on R2. This can

be verified by checking that φ : (R2, gc) → (R2, g−1), defined by φ(x, y) = (−y +

ln(coshx), ey tanhx) is an isometry with inverse

φ−1(x, y) = (sinh−1(yex), ln(
√

e−2x + y2)).

We will embed (R2, gc) into E
6.

Lemma 5.2 If η : R→ R is any C∞ function, then there exists a smooth function

h : R
2 → E4 such that the pull back of the metric gE of E4 is equal to

h∗gE = ε(x)2dx2 + η(x)2dy2, 0 ≤ ε(x) <
1

2
.

The proof of the lemma, which is really the clever part of the construction, relies on

smoothed out step functions and will be given following the proof of the proposition.
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Now apply the lemma to η(x) = sinh(x), and define f : R2 → E6 by

f(x, y) = [
∫ x

0

√

1− ε(t)2dt, y, h(x, y)].

We compute:

gE(fx, fx) = 1− ε2(x) + gE(hx, hx) = 1,

gE(fy, fy) = 1 + gE(hy, hy) = 1 + sinh2(x) = cosh2(x),

gE(fx, fy) = gE(hx, hy) = 0.

Thus f ∗gE is the hyperbolic metric dx2 +cosh2(x)dy2. Moreover, since f1 is a strictly

increasing function of x alone, the projection onto the first two components of f is

clearly a diffeomorphism. It follows that the image f(R2) is the graph of a smooth

function of two variables. In other words, f is a C∞ isometric embedding of H2 into

E6.

This embedding can be generalized to Hn into E6n−6 in a fairly simple way, how-

ever we need to use the metric g−1 given above, because if we try to generalize gc

to something like dx2 + cosh2(x)(dy2
1 + ... + dy2

n−1) then it no longer has constant

sectional curvature. So first observe that the composition of f with φ−1, namely

f̃(x, y) = [
∫ sinh−1(yex)

0

√

1− ε(t)2dt, ln(
√

e−2x + y2), h ◦ φ−1(x, y)],

is, of course, an embedding (R2, g−1) → E6. Using this, we define F : (Rn, g−1) →

E6n−6 as follows:

f(x,y) =
1√
n− 1

(f̃(x,
√
n− 1y1), ...f̃(x,

√
n− 1yn−1)].
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The pull-back metric is again easy to calculate:

gE(Fx, Fx) = (n− 1)−1[(n− 1)(1− ε2(x) + ε2(x))] = 1,

gE(Fyi , Fyj) = δije
2x,

gE(Fx, Fyi) = 0,

these values being inherited from the corresponding values for f̃ . This shows that the

pull-back metric is g−1. Examination of the components F1,F2,F7,F13,...,F5n−3 shows

that one can recover x, y1, ..., yn−1 from those n components. Consequently, the

image of F is the graph of a function of n variables, and therefore an embedding. ♠

Proof of lemma (5.2): Define h : R2 → E4 by

h(x, y) = [
ηψ1

s1

(x)eiys1(x),
ηψ2

s2

(x)eiys2(x)],

where sj(x) are piecewise constant functions, and ψj(x) are C
∞ functions such that

ψj vanishes, together with all of its derivatives, at each point of discontinuity of the

corresponding sj, and such that ψ2
1 + ψ2

2 = 1.

The function h is smooth and, bearing in mind that si(x) are piecewise constant,

we have:

hx = [
(ηψ1)

′eiys1

s1

,
(ηψ2)

′eiys2

s2

]

hy = [ηψ1ie
iys1 , ηψ2ie

iys2 ].
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The pull-back metric has coefficients:

g(hx, hx) = (
(ηψ1)

′

s1

)2 + (
(ηψ2)

′

s2

)2 =: ε(x),

g(hy, hy) = η2,

g(hx, hy) = 0.

The values of the step functions sj(x) on each interval of constancy are chosen inde-

pendently from the values of ψj(x), so we can choose sj to be sufficiently large on

each interval to make ε(x) < 1
2
. ♠

Remarks:

• Formulae for the smoothing functions ψi are provided in Appendix A.

• This construction can, of course, be rescaled to give an embedding of Hn
c into E6n−6,

for any c < 0.

5.4 Embedding Hn into H6n−5
c̃

Any hyperbolic space Hn
c can be embedded into H6n−5

c̃ , where c and c̃ are arbitrary

negative numbers, by composing an umbilic inclusion of E6n−6 into H6n−5
c̃ with the

embedding of Hn
c into E6n−6 described in the previous section.
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Chapter 6

Conclusion

Curvatures Local Embedding Complete Immersion Embedding

c > c̃ 1 1 1

c < c̃ < 0 n− 1 n− 1 ≤ k ≤ 3n− 3 n− 1 ≤ k ≤ 5n− 5

c < c̃ = 0 n− 1 n− 1 ≤ k ≤ 3n− 3 n− 1 ≤ k ≤ 5n− 6

c < 0 < c̃ n− 1 n− 1 ≤ k ≤ 3n− 3 Not Possible

c = 0 < c̃ n− 1 n− 1 Not Possible

0 < c < c̃ n− 1 n ≤ k ≤ n+ 1 n ≤ k ≤ 2n+ 2

Table 6.1: Range of possible values for the smallest codimension k for which there

exists an embedding of Qn
c into Qn+k

c̃ .

The table above is a summary of the results we have proved. Note that the entries

of the second column, rows two to four, should have n as a lower bound for the case

n = 2, and that it is conjectured to be thus for all n. And for n ≥ 3, the same
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column, rows three and four, have 3n− 4 as an upper bound, by [1]. Also recall that

if we don’t require an embedding to be a proper map, then the fourth and fifth row

entries of the last column have affirmative, rather than negative, answers.

6.1 Open Problems

Ideally, one would like to replace all of the inequalities in Table 6 with single numbers.

The hard part of this task, at least so far, seems to be getting the non-existence

results. The equation we used to prove the non-immersibility of H2 is actually the

integrability condition for the corresponding connection. It’s generalization to higher

dimensions is a system of non-linear PDE’s, the solutions of which would probably

have to be better understood if one were to try a similar proof for general n.

However, there are still some very interesting questions which one could hope to

solve in a shorter time frame. Here are some, the answers to which the author was

unable to find in the literature:

1. Is there an isometric embedding or immersion of Sn into S2n
r where r is less

than 1?

2. In the cases where global embeddings are actually possible, is the minimum

codimension needed for an embedding ever actually different from the codimen-

sion needed for a complete immersion? Given the results found so far, and
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looking at the way they are constructed, one would expect this to be the case,

however we have not found an instance where there is an immersion of Qn
c into

Qn+k
c̃ , and a proof that there is no embedding, except on topological grounds.

3. When c and c̃ are both non-zero, do their relative magnitudes make a difference?

In Section 5.1 we were able to find, for n < 9, an embedding of a sphere SnR

into S2n+1
r with R > r, if the difference between R and r were not too great.

However, we did not prove that this could not be done for arbitrary R > r using

some other method. Note that if this were the case, then the table of results

might need to have considerably more rows, quite apart from the separate issue

of whether there is a nice formula in terms of n for the codimensions required.
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Appendix A

Smoothed Step Functions

The following construction is due to Blanusa [2]. Let χ(t) = sin(πt)e− sin−2(πt), (where

we define e− sin−2(0) to have the value zero) and A =
∫ 1
0 χ(t)dt. The functions

ψ1(x) =

√

1

A

∫ 1+x

0
χ(t)dt,

ψ2(x) =

√

1

A

∫ x

0
χ(t)dt

satisfy, for every x ∈ R,:

ψ1(x)
2 + ψ2(x)

2 = 1. (A.1)

Moreover, ψi(x), together with all of its derivatives, vanishes at all integers congruent

to i mod(2). Hence if si(x) is a positive function which is piecewise constant, with

discontinuities only at integer values congruent to i mod(2), then ψi(x)
si(x)

are smooth

functions.

Proof: The functions ψi(x) are even, so without loss of generality, assume x > 0.
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In order to be sure that ψi are well-defined, we need to check that
∫ x
0 χ(t)dt is

non-negative. By the periodicity of χ(t), it is enough to check this on the inter-

val [0, 2]. Non-negativity follows from the fact that χ is positive on [0, 1] and that,

since χ(t+ 1) = −χ(t), we have | ∫ x1 χ(t)dt| ≤
∫ 1
0 (χ(t)dt for x ∈ [1, 2].

Let us check (A.1). Observe that

Aψ2
2(x) =

∫ x

0
χ(t)dt = −

∫ x

0
χ(t+ 1)dt = −

∫ 1+x

1
χ(t)dt.

Using this we obtain

Aψ2
1(x) + Aψ2

2(x) =
∫ 1+x

0
χ(t)dt−

∫ 1+x

1
χ(t)dt

= A,

which proves (A.1).

Finally we must check that ψi and all its derivatives vanishes at x = 2k+ i, for all

integers k. Let us verify this for ψ2 - then we will be done, because ψ1(x) = ψ2(x+1).

Clearly it is sufficient to check that the function f(x) =
∫ x
0 sin(t)e− sin−2(t)dt has the

desired properties at x = 0, taking all derivatives as limits from the right, and using

that, by definition, ψ2(x) = ψ2(−x) (note that ψi are periodic). Now f(0) = 0 and

f ′(x) = sin(x)e− sin−2(x). It follows by induction that f (n)(x) is always the factor

e− sin−2(x) divided by some rational function of sin(x) and cos(x). The numerator

vanishes exponentially at x = 0, i.e. faster than any rational function of sines and

cosines, which completes the proof.
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