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ABSTRACT. We discuss recent work of the author and collaborators on generalizations of Björling’s
classical problem to the case of constant non-zero mean curvature surfaces in 2+1-dimensional space-
time. The aim is to give an overview, and to point out the similarities and differences between the
two cases of timelike and spacelike surfaces. Applications to the construction of CMC surfaces with
prescribed singularities are also described.

1. INTRODUCTION

This article discusses results of work of the author and collaborators, [2], [5] and [6], on the gener-
alization of Björling’s problem for minimal surfaces to the case of constant non-zero mean curvature
(CMC) surfaces in the 3-dimensional Minkowski space R2,1. The classical Björling problem is to
find the minimal surface in R3 which contains a prescribed curve with the surface tangent distribution
prescribed along the curve. It has a unique solution via analytic extension because the data is enough
to determine the (holomorphic) Weierstrass data along the curve. The generalization of this problem
to other surface classes besides minimal is sometimes called the geometric Cauchy problem.

The problem has also been considered for zero mean curvature surfaces in R2,1, both spacelike [1]
and timelike [7]. There is a substantial difference between the spacelike and timelike cases, as the
former is an elliptic problem and has a Weierstrass representation in terms of holomorphic data, as in
the case of minimal surfaces in R3, whilst the timelike case is hyperbolic and has a d’Alembert type
solution in terms of two functions of one variable each. The timelike case is complicated by the fact
that there is no unique solution to the Björling problem if the initial curve is characteristic.

All of the last comments also apply to the corresponding problems for constant non-zero mean
curvature surfaces. Moreover, the non-zero situation has the additional property that the Weier-
strass/d’Alembert type representations are now in terms of maps into a loop group [9, 8], and ob-
taining the solutions from the data entails a loop group decomposition (Iwasawa or Birkhoff). The
loop group decomposition is really an LU decomposition of infinite matrices, which can easily be
approximated numerically, but cannot be written down explicitly, in general. Therefore some work is
necessary in going back and forth between the surface and the corresponding Weierstrass data.

The Björling problem for non-minimal CMC surfaces in R3, was solved by the author and J
Dorfmeister in [3]. Perhaps the essential point of the solution is that, although the Iwasawa decom-
position cannot be computed explicitly for general Weierstrass data, one has considerable flexibility
in one’s choice of Weierstrass data. It turns out to be possible to choose the Weierstrass data such
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that the Iwasawa decomposition is trivial along the initial curve in question. This allows one to write
down explicitly the Weierstrass data corresponding to given Björling data along a curve. The exact
same argument can be used to solve the problem for spacelike CMC surfaces in R2,1, so that problem
was essentially solved by the R3 case. We discuss this below in Section 2.

The geometric Cauchy problem for timelike CMC surfaces was solved by the author and M Svens-
son in [5]. Although the d’Alembert construction is rather different from the Weierstrass construction
of the spacelike case, the solution of the problem again depends essentially on the fact that one can
choose d’Alembert data such that the loop group decomposition (Birkhoff in this case) is trivial along
the curve in question. This is discussed in Section 3.

Finally there is the singular geometric Cauchy problem, which arises naturally for CMC surfaces
in R2,1. Both timelike and spacelike CMC surfaces almost always have generic singularities. Most of
these arise at points where the loop group decomposition has a middle term, and cannot be avoided
in general. An analogous situation exists for minimal/maximal surfaces in R2,1, and the singularities
have been studied recently by various authors. In particular, the singular Björling problem, which is
to find the minimal/maximal surface with a prescribed singular curve, and a further parallel vector
field prescribed along the curve (in analogue with the Gauss map), has been studied by S-D Yang,
YW Kim, S-E Koh and H Shin in [11] and [10].

FIGURE 1. The singular geometric Cauchy construction can be used to produce
CMC surfaces with arbitrary prescribed singular curves. The timelike CMC surface
shown has infinitely many swallowtails along a cuspidal edge. The first few can be
seen in this plot of a finite domain. The geometric Cauchy data are s(v) = sin(v),
t(v) = 2, θ ′(v) = 0.0001. The swallowtails occur when s = 0.
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The singular geometric Cauchy problem for spacelike CMC surfaces is solved by the author in [2].
The essential problem here is that the SU(1,1) frame for the surface, which is critical for solving the
problem in the regular situation of [3], blows up as the singular curve is approached. The problem is
solved by multiplying all the maps by a certain element of the loop group, which moves all the data
into the big cell, that is the set on which the Iwasawa decomposition does not have a middle term. It is
then possible to solve the problem with a new "singular frame" which arises from this idea. An anal-
ogous device is used to solve the problem for timelike CMC surfaces in joint work with M Svensson
in [6]. This will be discussed in Section 4.

2. SPACELIKE CMC SURFACES

For explicit details of the following discussion, the reader is referred to [4] and [3].

2.1. The generalized Weierstrass representation. The so called DPW (Dorfmeister/Pedit/Wu [9]),
or generalized Weierstrass representation, for spacelike CMC surfaces is sketched below. We will
discuss it locally for simplicity. Let U ⊂ C2 be an open set.

• A conformal CMC immersion f : U→R2,1 is represented by an extended frame F̂ : U→ΛG,
where G = SU(1,1), and ΛG is the group of twisted loops in G.

• The surface f is recovered from F̂ by a simple formula, called the Sym-Bobenko formula,
which is essentially of the form S (F̂) = λ (∂λ F̂)F̂−1

∣∣
λ=1.

• The extended frame is characterized1 among smooth maps into ΛG by the fact that its Maurer-
Cartan form F̂−1dF̂ can be written:

F̂−1dF̂ = A−1λ
−1dz+α0 + τ(A−1)λdz̄,

where τ is the involution determining the real form su(1,1) in sl(2,C), and α0 is a 1-form
which does not depend on λ .

• Finally (and this is the DPW part of the construction), the extended frame can be obtained
from a holomorphic frame Φ̂ : U → ΛGC by a pointwise Iwasawa decomposition

(2.1) Φ̂ = F̂B̂+, F̂ ∈ ΛG, B̂+ ∈ Λ
+GC,

the last group denoting those loops in SL(2,C) which can be holomorphically extended to the
unit disc.

• By comparing the Maurer-Cartan forms of F̂ and Φ̂, and using that B̂+ has a Taylor expansion
in λ , it is easy to deduce that Φ̂ must be holomorphic, and is characterized by its Maurer-
Cartan form being of the form

Φ̂
−1dΦ̂ = (ψ−1λ

−1 +ψ0 +O(λ ))dz.

1This is standard for harmonic maps into symmetric spaces, and the Gauss map is harmonic into H2
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The holomorphic functions in the matrices ψi are arbitrary, apart from a regularity condition
on one of them. This is the generalized Weierstrass representation for (spacelike) CMC sur-
faces.

2.2. Solution of the Björling problem. Now the idea that is used in [3] to solve the Björling problem
is actually very simple: The factor F̂ ∈ΛG in the decomposition 2.1 is essentially unique. So suppose
that Φ̂(z0) is already ΛG-valued, i.e. already takes values in the real form. At such a point, the
Iwasawa decomposition (2.1) is trivial:

Φ̂(z0) = F̂(z0).

We can use this to construct a special holomorphic frame from the knowledge of F̂ along a curve as
follows: suppose we know the value of F̂ along some curve in U , say F̂(x+ 0.i) = F̂0(x) along an
interval J =U ∩R. Let us set

Φ̂0(x) = F̂0(x), x ∈ J,

and then extend this holomorphically to a map Φ̂ : V → ΛGC, from some open subset V containing
J. It turns out that this can be done, and moreover this map Φ̂ has all the required properties of a
holomorphic extended frame for a CMC surface. Further, the corresponding extended frame F̂ agrees
with F̂0(x) along J, because the Iwasawa decomposition is trivial along this curve. Thus we have
solved the Björling problem, provided that we can construct F̂0(x) along J from the Björling data. It
turns out that this can be done in a fairly straightforward manner (see [3]), and one finally obtains a
simple formula for the holomorphic potential Φ̂−1dΦ̂ in terms of the Björling data.

Using a unique local correspondence between Weierstrass data and extended frames, obtained via
a normalized Birkhoff splitting, it is also not difficult to show that the Björling problem has a unique
solution.

3. TIMELIKE CMC SURFACES

We turn now to the timelike case. The d’Alembert representation given in [8] differs from the
Weierstrass representation described in Section 2 as follows:

• The extended frame this time takes values in a subgroup of ΛSL(2,C) consisting of loops
which are in G = SL(2,R) for real values of λ .

• The Maurer-Cartan form of the extended frame F̂(x,y), where x and y are lightlike coordinates
for U ⊂ R1,1, has the form

F̂−1dF̂ = A1λdx+α0 +A−1λ
−1dy.

• The extended frame F̂(x,y) is obtained from a pair of maps X̂(x) and Ŷ (y), where

X̂−1dX̂ =
1

∑
j=−∞

ψ
X
i dx, Ŷ−1dŶ =

∞

∑
j=−1

ψ
Y
i dy,
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and the coefficients ψX
i and ψY

i are essentially arbitrary functions.

• F̂ is obtained from X̂ and Ŷ by performing a pointwise Birkhoff splitting

(3.1) X̂−1(x)Ŷ (y) = Ĥ−(x,y) Ĥ+(x,y),

where Ĥ−(x,y) ∈ Λ−G, and Ĥ+(x,y) ∈ Λ+G. 2

Then

(3.2) F̂(x,y) = Ŷ (y)Ĥ−1
+ (x,y).

3.1. Solution of the geometric Cauchy problem. Here we describe joint work with M Svensson
in [5]. As in the spacelike case, the essential idea is to contrive a situation where the (this time
Birkhoff) decomposition (3.1) is trivial along the curve. Looking at their Maurer-Cartan forms, where
the leading terms must be non-vanishing for regular surfaces, we can see that X̂(x) will have a pole
(in λ ) at ∞ while Ŷ (y) will have a pole at λ = 0. Thus, the Birkhoff decomposition is unlikely to
be trivial unless we have something like X̂−1(x)Ŷ (y) = constant in λ , and indeed we can achieve this
along the curve y = x if we can arrange, for example, that

X̂(v) = Ŷ (v).

This leads to a solution to the geometric Cauchy problems along non-characteristic curves, i.e.
curves which are never tangent to a null curve. For such a curve in R1,1, one can always (with a
possible change of orientation) locally choose null coordinates (x,y), such that the curve is given as
u = 0 in the coordinates u = (x− y)/2, v = (x+ y)/2.

Suppose one can construct, from the geometric Cauchy data, the extended frame F̂(0,v) = F̂0(v)
for a timelike CMC surface along the curve x = y = v, i.e. u = 0. (It turns out that one can do this).
Let us now set

X̂(x) = F̂0(x), Ŷ (y) = F̂0(y).

Then it is easy to check that X̂ and Ŷ have precisely the required form for the d’Alembert data of a
timelike CMC surface, and thus generate such a surface using the scheme outlined above. Along the
curve x = y = v we have X̂(x) = Ŷ (y), so that, along this curve the Birkhoff decomposition at (3.1)
is just I = I.I, where I is the identity matrix. Along this curve, the extended frame for the surface so
constructed is given by (3.2) as

F̂(0,v) = Ŷ (v).I = F̂0(v).

Thus the constructed surface solves the geometric Cauchy problem. One can show, again using a
normalized Birkhoff decomposition, that the solution is unique.

Finally, the case that the initial curve is characteristic (null), is also treated in [5]. The solution
is not unique, but we describe how to construct all solutions. We do not treat initial curves which
become characteristic at isolated points.

2The notation for the last two groups is not strictly correct here, but in any case Λ−G consists of loops which extend
holomorphically to {|z|> 1} ⊂ Ĉ, while Λ+G consists of loops which extend to the unit disc.
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4. THE SINGULAR GEOMETRIC CAUCHY PROBLEM

The solution of the singular geometric Cauchy problem, treated in [2] and [6] for, respectively,
spacelike and timelike CMC surfaces is rather complicated to describe. As mentioned in the intro-
duction, the extended frame F̂ blows up as such a curve is approached. Therefore, it is clear that the
solutions outlined above cannot be applied for such a curve.

We will not attempt to describe the solution here, but only mention a critical idea on which the
solution is built. Let us consider the case of spacelike surfaces. As described in Section 2, the
extended frame F̂ (and hence the surface) is obtained from the holomorphic frame Φ̂ by an Iwasawa
decomposition

Φ̂ = F̂B̂+.

When the group is non-compact, the Iwasawa decomposition is only written this way on an open dense
subset of the loop group, called the big cell. The rest of the loop group is a disjoint union ∪∞

i=1P±i of
subvarieties, of codimension increasing with |i|.

On Pi the Iwasawa decomposition reads

(4.1) Φ̂ = ÛωiB̂+,

where Û ∈ ΛG and the middle term ωi is a certain unique special element.

The essential idea, first used in [4], is as follows: suppose that, at some point z0, we have

Φ̂(z0) = ωi.

(The possible terms Û(z0) and B̂+(z0) in (4.1) do not affect the following). Now set

Φ̂ω = Φ̂ω
−1
i .

Then Φ̂ω(z0) = I, which is in the big cell. The big cell is an open set, so Φ̂ω(z) takes values in the big
cell on a neighbourhood of z0. Thus, around z0, one has an Iwasawa decomposition

Φ̂ω = F̂ω B̂+.

This was used to analyze the surface as P±1 is encountered in [4], and it turns out that finite singu-
larities occur only (and always) at P1, and the surface always blows up at P−1. 3

Now the important, and not obvious, thing is that it turns out that if we let F̂ denote the extended
frame corresponding to Φ̂, then, on the intersection of the sets where both F̂ and F̂ω are defined, which
is an open dense set in the domain, we have that the Sym-Bobenko formula agrees for both frames:

S (F̂ω) = S (F̂).

This means that F̂ω can be regarded as another kind of extended frame for the surface, which, however
is now well defined at the singular set corresponding to Φ̂−1(P1).

3The higher order small cells P j, for | j|> 1 have not been analyzed, but would not be relevant to generic singularities
as they have higher codimension.
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FIGURE 2. Spacelike CMC surfaces with prescribed singularities. Left: swallowtail.
Right: cuspidal cross cap

This singular frame was used by the author in [2] to solve the singular Björling problem for space-
like CMC surfaces. It is not immediately clear how to define the singular frame from the geometric
Cauchy data, because the definition of F̂ω is not geometric but rather comes algebraically from the
holomorphic frame via an Iwasawa decomposition. Finding a way to do this was a major issue in this
work.

The solution of the geometric Cauchy problem for timelike CMC surfaces, also depends on the
idea of translating the data into the (Birkhoff) big cell and working with a "singular" frame. This will
appear in a forthcoming article, joint with M Svensson [6].

FIGURE 3. A timelike CMC surface with a cuspidal cross cap singularity. Geometric
Cauchy data: s(v) = 2+0.2v2, t(v) = v, θ ′ constant.
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For both the timelike and spacelike cases, the singular geometric Cauchy construction is used to
find the generic singularities of the generalized surfaces defined there. In both cases, the generic non-
degenerate singularities turn out to be cuspidal edges, swallowtails and cuspidal cross caps.

5. NUMERICAL IMPLEMENTATIONS

The solutions to all of these geometric Cauchy problems can be computed using numerical imple-
mentations of the DPW method. The DPW method takes the "potentials", Φ̂−1dΦ̂ for the spacelike
case, and the pair (X̂−1dX̂ ,Ŷ−1dŶ ) for the timelike case, integrates these, performs a Birkhoff or
Iwasawa decomposition and then applies the Sym-Bobenko formula. All of this can be implemented
numerically. The essential point now is that our solutions for the geometric Cauchy problem give
formulae for these potentials directly from the geometry Cauchy data, and hence can be computed.

FIGURE 4. The singular curve is always a null curve for both timelike and space-
like CMC surfaces. For smooth timelike CMC surfaces, a null curve is characteristic.
However this does not apply to singular curves: the curve is not, in general, charac-
teristic. If the singular curve is characteristic, then the singularity is always a straight
line, and the geometric Cauchy problem has infinitely many solutions. Two examples
are shown here.

The images in this article are from the author’s own implementation, written in Matlab. The non-
characteristic singular geometric Cauchy problem can always be expressed as the problem of finding
f (u,v) with

fv = s(−e0 + cos(θ)e1 + sin(θ)e2),

fu = t(−e0 + cos(θ)e1 + sin(θ)e2).

The DPW potentials are given in [6] in terms of the functions s(v), t(v) and θ ′(v). If all functions are
non-zero and s 6=±t then the surface has a cuspidal edge. If s vanishes to first order, a swallowtail. If
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t vanishes to first order, a cuspidal cross cap. See Figures 1 and 3.

Examples of characteristic singular curves are given in Figure 4.
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