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Abstract. Spacelike constant mean curvature surfaces in Minkowski 3-space
L3 have an infinite dimensional generalized Weierstrass representation. This is
analogous to that given by Dorfmeister, Pedit and Wu for constant mean cur-

vature surfaces in Euclidean space, replacing the group SU(2) with SU(1, 1).
The non-compactness of the latter group, however, means that the Iwasawa
decomposition of the loop group, used to construct the surfaces, is not global.

The construction is described here, with an emphasis on the difference from
the Euclidean case.
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1. Introduction

This article expands on the content of a talk given at the conference Geometry,
Integrability and Quantization, in Varna 2008. It discusses the generalized Weier-
strass representation for constant mean curvature surfaces in both the Euclidean
and in the Minkowski 3-space, with attention given to the difference between these
cases. Detailed proofs and further results on the Minkowski case will appear in a
forthcoming article by the authors [2].

2. Constant Mean Curvature Surfaces in Euclidean 3-space

2.1. Minimal Surfaces. Constant mean curvature surfaces are mathematical mod-
els for soap films and other fluid membranes. A special case is a minimal surface,
where the mean curvature is zero. Mathematically, the study of minimal surfaces
has been greatly assisted by the well-known Weierstrass representation, which al-
lows one to construct all minimal surfaces from pairs of holomorphic functions via
a simple formula. It is based on the fact that the Gauss map of a minimal surface
is holomorphic, together with the fact that a CMC surface in general is determined
by its Gauss map. Specifically, the Weierstrass representation for minimal surfaces
says that, if g is meromorphic, f is holomorphic and fg2 is holomorphic, then





x1

x2

x3



 =







Re
∫ z

0
f(w)(1−g(w)2)

2 dw

Re
∫ z

0
if(w)(1+g(w)2)

2 dw
Re
∫ z

0
f(w)g(w)dw







is a minimal surface in Euclidean 3-space. Conversely, all minimal surfaces are
given this way.
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2.2. Non-Minimal CMC Surfaces. For non-minimal CMC surfaces, it is no
longer true that the Gauss map is holomorphic. It is however, harmonic, and
harmonic maps into a symmetric space G/K have a loop group representation; that
is, they are represented by certain maps into ΩG, the group of based loops (maps
from the unit circle into G which map 1 to the identity element). Now ΩG admits
a complex structure, and the maps in question are holomorphic with respect to
this structure. This underlies the generalized Weierstrass representation for CMC
surfaces, which was given by Dorfmeister, Pedit and Wu [3]. The practical difference
between this representation and that of minimal surfaces described above, is that
one needs to perform a loop group decomposition (the Iwasawa decomposition) on
the holomorphic data before one can obtain the surface from a simple formula.
The Iwasawa decomposition can, in general, be carried out quickly and to arbitrary
precision, using numerical methods.

2.3. The DPW Method. The method of Dorfmeister-Pedit-Wu (DPW), gives a
holomorphic representation for general harmonic maps from a Riemann surface into
a compact symmetric space. In essence, it is based on a more general simple princi-
ple, which was also used by Krichever [4], to produce solutions of the sine-Gordon
equation from pairs of arbitrary curves. The basic idea, which will be described
here, was studied in general in [1], and could be called the KDPW method, after
Krichever-DPW.

If GC is a complex semisimple Lie group, ΛGC denotes the group of maps γ : S
1 →

GC, which are of an appropriate smoothness class. A smooth map F : M → ΛGC,
can be thought of as a 1-parameter family of maps, Fλ : M → GC, where λ ∈ S

1.
A fundamental object in the study of submanifolds of symmetric spaces, is the
Maurer-Cartan form, F−1

λ dFλ, which takes values in the Lie algebra gC. If a and b
are (extended) integers, say that F is of connection order (a, b) if the Maurer-Cartan
form has dependence on λ which is a Laurent polynomial as follows:

F−1
λ dFλ =

b
∑

a

aiλ
i.

Basic Principle: The KDPW Method constructs all connection order (a, b) maps,
a < 0 < b, from pairs of (a,−1) and (1, b) maps.

Where this principle has been used, it simplifies the data: for the case of the
sine-Gordon equation, the (a,−1) and (1, b) maps are just arbitrary functions of one
variable. For the case of harmonic maps, there is just an (a,−1) map (the other one
is related to it by an involution), and this is an essentially arbitrary holomorphic
map.

To describe one direction of the procedure, we need the Birkhoff decomposition
[5], which says that

B± := Λ±GC · Λ∓GC,

is open and dense in the identity component of ΛGC. Here Λ±GC consists of loops
which extend holomorphically to the unit disc D and its complement Ĉ \D respec-
tively. Thus loops in γ ∈ B± can be factorized γ = γ± γ∓, where γ± have power
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series expansions in λ±1.

Assume now that F takes values in the open set B± ∩B∓. If F is of order (a, b),
a < 0 < b, decompose

F = F+G− = F−G+.

Then F+ is of order (1, b) and F− is of order (a,−1). We check this for F+:

F−1
+ dF+ = G−(F−1dF )G−1

− + G−dG−1
−

= G−(
b
∑

a

aiλ
i)G−1

− + G−dG−1
−

= c0 + ... + cbλ
b.

We used the power series expansions of the group elements to deduce the final line.
It is possible to normalize the Birkhoff decomposition so that c0 is zero, and then
F+ is of order (1, b).

Conversely, given order (1, b) and (a,−1) maps, F+ and F−, we can construct an
order (a, b) map F . To show the converse, there are two cases, as discussed in [1],
and the case which is relevant to this article involves an Iwasawa decomposition,
which will be mentioned again below.

After a normalization, both directions are unique, and one obtains a correspon-
dence as follows:

F ←→
{

F+

F−

}

(1)

order (a, b)
order (1, b)

order (a,−1)

2.4. A Loop Group Representation of Harmonic Maps into Compact

Symmetric Spaces. Here we outline results of [3]. The ideas which led to the
loop group formulation here are due to many people, and references can be found
in [2].

Let G/K be a compact symmetric space, K = Gσ, the fixed point subgroup of
an involution σ. On ΛGC, define an involution σ̂ :

(σ̂γ)(λ) := σ(γ(−λ)).

Consider the subgroup of G-valued loops which are fixed by this involution, ΛGσ̂ ⊂
ΛGC

σ̂ ⊂ ΛGC. The “twisting” given by taking elements which are fixed by σ̂ means
that information about the symmetric space G/K is encoded in the twisted sub-
group ΛGσ̂.

Let Ω be a simply connected domain in C.

Suppose: F : Ω→ ΛGσ̂ is a connection order (−1, 1) map.
Apply the DPW correspondence (1): F ↔ {F+, F−}. In this case, it turns out
that F+ is determined by F−, so (1) can be simplified to:

(2) F ↔ F−.
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Now fix λ ∈ S1: then Fλ : Ω→ G.

Fact: The projection of F , to G/K, is a harmonic map Ω→ G/K if and only

if F− is holomorphic in z:

order (−1, 1) F ↔ F− order (−1,−1)

frame for harmonic map holomorphic

2.5. “Weierstrass Representation” for CMC H 6= 0 Surfaces. We have just
seen that producing the loop group “frames” F for harmonic maps into G/K
amounts to producing a holomorphic connection order (−1,−1) map into ΛGC.
The recipe is roughly as follows:

(1) Given a(z), b(z) arbitrary holomorphic functions, a non-vanishing. The
latter condition assures regularity of the surface. Set

(3) α =

(

0 a(z)
b(z) 0

)

λ−1dz.

(2) Since the 1-form depends only on one complex variable, it is automatically
integrable, and there exists (on a simply connected domain) a map F− :
Ω → ΛG, such that α = F−1

− dF−. Additionally, F− is holomorphic and,
by definition, is of connection order (−1,−1).

(3) Apply KDPW correspondence (2) to get F , a frame for a harmonic map.
(4) A CMC surface is obtained from F by a simple formula, the Sym-Bobenko

formula (see (6) below).

In fact, all CMC surfaces in R
3 are obtained this way.

2.6. The Iwasawa Decomposition. For the← direction of the DPW correspon-
dence (1) one needs the Iwasawa splitting

ΛGC = ΛG · Λ+GC.

This holds if G is compact. F is obtained from F− via an Iwasawa factorization:

F− = FG+.

More generally, for the← direction, the holomorphic map F− can be of order (−1, b)
where b ≥ −1, so we could have allowed higher order terms in our initial data (3)
given in the above recipe for CMC surfaces.

3. CMC Surfaces in Minkowski 3-Space

Now we consider the case of spacelike CMC surfaces in Minkowski 3-Space, L
3,

which is studied in [2]. The construction is analogous to CMC surfaces in R
3,

replacing the group SU(2) with the non-compact real form SU(1, 1).
Main Difference: SU(1, 1) non-compact implies that the Iwasawa decomposi-

tion is not global.
In fact we show that the Iwasawa splitting is defined on an open dense set (the

“big cell”), and that the surfaces have singularities when the holomorphic data
encounters this boundary.
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3.1. The Loop Group Construction. We use the Pauli matrices:

σ1 :=

(

0 1
1 0

)

, σ2 :=

(

0 −i
i 0

)

, σ3 :=

(

1 0
0 −1

)

.

Let GC be the special linear group SL2C, and define the twisted loop group
ΛGC

σ̂ as in Section 2.4, where σ = Adσ3
. Now the real form SU1,1 is the fixed point

subgroup with respect to the involution

(4) τ(x) = Adσ3
(xt)−1.

For our application, however, it turns out that it is convenient to set

G := {x ∈ SL(2, C) | τ(x) = ±x},
and we consider maps into the subgroup

ΛGσ̂ := {x ∈ ΛG| σ̂(x) = x} ⊂ ΛGC.

Note that, defining (if u is a scalar function of λ) u∗(λ) := u(λ̄−1), elements

of this subgroup are of the form

(

a b

b∗ a∗

)

or

(

a b

−b∗ −a∗

)

depending on whether

τ(x) = x or τ(x) = −x respectively.

3.1.1. SU(1, 1) Iwasawa Decomposition. To describe the decomposition precisely,
we define the special loops:

ωm =

(

1 0

λ−m 1

)

, m odd ; ωm =

(

1 λ1−m

0 1

)

, m even.

Theorem 3.1. (SU(1, 1) Iwasawa Decomposition) [2].
ΛGC

σ̂ is a disjoint union

ΛGC

σ̂ = B1,1 ⊔
⊔

n∈Z+

Pn,

where we define the

big cell: B1,1 := ΛGσ̂ · Λ+GC

σ̂ ,

n’th small cell: Pn := ΛSU(1, 1)σ̂ · ωn · Λ+GC

σ̂ .

• B1,1, is an open dense subset of ΛGC

σ̂ .
• Any φ ∈ B1,1 can be expressed as

(5) φ = FB, F ∈ ΛGσ̂, B ∈ Λ+GC

σ̂ ,

F is unique up to right multiplication by Gσ := ΛGσ̂ ∩G.
• The map π : B1,1 → ΛGσ̂/Gσ̂ given by φ 7→ [F ], derived from (5), is a real

analytic projection.

3.1.2. The Generalized Weierstrass Representation. For λ0 ∈ S
1, the Sym-Bobenko

formula is given by:

fλ0 = − 1

2H
S(F )

∣

∣

∣

λ=λ0

,(6)

S(F ) := Fiσ3F
−1 + 2iλ∂λF · F−1 .

We can now state the generalized Weierstrass representation for CMC surfaces
in L

3, which differs from that of the Euclidean case only in that we must restrict
to the open set which maps into the big cell B1,1:
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Theorem 3.2. [2] (Holomorphic Representation for Spacelike CMC Surfaces in
L

3). Let

ξ =

∞
∑

i=−1

Aiλ
idz ∈ Lie(ΛGC

σ̂)⊗ Ω1(Σ)

be a holomorphic 1-form over a simply-connected Riemann surface Σ, with

a−1 6= 0,

on Σ, where A−1 =
(

0 a
−1

b
−1 0

)

. Let φ : Σ→ ΛGC

σ̂ be a solution of

φ−1dφ = ξ.

On Σ◦ := φ−1(B1,1), SU(1, 1)-Iwasawa split:

(7) φ = FB, F ∈ ΛGσ̂, B ∈ Λ+GC

σ̂ .

Then for any λ0 ∈ S
1, the map fλ0 := f̂λ0 : Σ◦ → L

3, given by the Sym-Bobenko
formula (6), is a conformal CMC H immersion, and is independent of the choice
of F in (7).

3.2. Examples of the Big Cell Boundary Behaviour.

3.2.1. Example 1: Hyperboloid of Two Sheets. We start with the holomorphic 1-
form

ξ =

(

0 λ−1

0 0

)

dz, Σ = C.

This can be integrated to

φ =

(

1 zλ−1

0 1

)

: Σ→ ΛGC

σ̂ ,

which takes values in B1,1 for |z| 6= 1. An SU(1, 1)-Iwasawa decomposition is:

φ = F ·B, F : Σ \ S
1 → ΛG, B : Σ \ S

1 → Λ+GC

σ̂ ,

F =
1

√

ε(1− |z|2)

(

ε zλ−1

εz̄λ 1

)

,

B =
1

√

ε(1− |z|2)

(

1 0
−εz̄λ ε(1− zz̄)

)

, ε = sign(1− |z|2) .

The Sym-Bobenko formula (6) gives

f̂1(z) =
1

H(x2 + y2 − 1)
· [2y, −2x, (1 + 3x2 + 3y2)/2],

which is a two-sheeted hyperboloid {x2
1 + x2

2 − (x0 − 1
2H

)2 = − 1
H2 }. Note that the

identification of Lorentzian 3-space R
2,1 with g = su1,1, with inner product given

by 〈X,Y 〉 = 1
2 trace(XY ), is given by:

e1 ↔ σ1, e2 ↔ −σ2, e3 ↔ iσ3.

Then 〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = 1.
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We can see directly that we are in a small cell precisely when |z| = 1, because
there we have the explicit factorization of φ ∈ ΛSU(1, 1)σ̂ · ω2 · Λ+GC

σ̂ :
(

1 zλ−1

0 1

)

=

(

p
√

z λ−1q
√

z

λq
√

z
−1

p
√

z
−1

)

· ω2 ·
(

(p + q)
√

z
−1

0

−λq
√

z
−1

(p− q)
√

z

)

,

where p2 − q2 = 1 and p, q ∈ R. In other words, φ ∈ P2 for |z| = 1, and we saw
above that φ ∈ B1,1 otherwise. Note: the surface blows up as |z| → 1.

3.2.2. Example 2: Numerical Experiment.

ξ = λ−1 ·
(

0 1

100 z 0

)

dz,

Numerically, using Nick Schmitt’s program Xlab [6], we do the following:

(1) Integrate with initial condition φ(0) = ω1, to get φ : Σ→ ΛGC

σ̂ .
(2) Iwasawa split to get F : Σ→ ΛGσ̂.
(3) Compute Sym-Bobenko formula to get f1 : Σ→ L

3.
(4) Use XLab to view the surface.

By construction, we are in the small cell P1 precisely at z = 0, and at this point
we obtain a singularity (Figure 1) which appears to be what is sometimes called a
Shcherbak surface singularity [7].

Figure 1. The singularity appearing in Example 2

3.3. Results on the Big Cell Boundary Behaviour. In [2] we prove that these
examples are, in a certain sense, representative when one encounters the small cells
P1 and P2. Specifically:

(1) The map fλ0 : Σ→ L
3 always extends to a well defined (and real analytic)

map at z0 ∈ φ−1(P1), but is not immersed at such a point.
(2) The map fλ0 : Σ→ L

3 always blows up as z → z0 ∈ φ−1(P2).

The surface is guaranteed to be smooth provided the holomorphic map φ takes
values in the big cell B1,1. Since the higher order small cells Pi, i > 2, have
higher codimension in the loop group, it is reasonable to expect that generic finite
singularities will therefore occur only at P1.

3.4. Applications. It is possible to obtain surfaces with specific geometric prop-
erties by choosing the holomorphic 1-form ξ to have a particular special form. One
example of an application of this is a classification of CMC surfaces with rotational
symmetry in Minkowski space, given in [2]. There are eight natural generic families
of such surfaces, and examples from each are shown in Figure 2.
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Figure 2. Examples from each of the eight families of surfaces
with rotational symmetry in L

3. Images made by XLab [6].
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